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Abstract This work presents an adaptive superfast proximal augmented Lagrangian (AS-PAL) method for
solving linearly-constrained smooth nonconvex composite optimization problems. Each iteration of AS-PAL
inexactly solves a possibly nonconvex proximal augmented Lagrangian (AL) subproblem obtained by an aggres-
sive/adaptive choice of prox stepsize with the aim of substantially improving its computational performance
followed by a full Lagrangian multiplier update. A major advantage of AS-PAL compared to other AL methods
is that it requires no knowledge of parameters (e.g., size of constraint matrix, objective function curvatures,
etc) associated with the optimization problem, due to its adaptive nature not only in choosing the prox step-
size but also in using a crucial adaptive accelerated composite gradient variant to solve the proximal AL
subproblems. The speed and efficiency of AS-PAL is demonstrated through extensive computational experi-
ments showing that it can solve many instances more than ten times faster than other state-of-the-art penalty
and AL methods, particularly when high accuracy is required.
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linearly-constrained nonconvex composite optimization · iteration complexity · adaptive method
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1 Introduction

The main goal of this paper is to present the theoretical analysis and the excellent computational performance
of an adaptive superfast proximal augmented Lagrangian method, referred to as AS-PAL, for solving the
linearly-constrained smooth nonconvex composite optimization (SNCO) problem

ϕ∗ := min{ϕ(z) := f(z) + h(z) : Az = b}, (1.1)

where A : ℜn → ℜl is a linear operator, b ∈ ℜl, h : ℜn → (−∞,∞] is a closed proper convex function which
is Mh-Lipschitz continuous on its compact domain, and f : ℜn → ℜ is a real-valued differentiable nonconvex
function which is mf -weakly convex and whose gradient is Lf–Lipschitz continuous. AS-PAL is essentially an
adaptive version of the IAIPAL method and the NL-IAIPAL method studied in [15, 16], but, in contrast to
these methods, it does not require knowledge of the above parameters mf , Lf , and Mh.

An iteration of AS-PAL has a similar pattern to the ones of the methods in [15, 16] and is also based on
the augmented Lagrangian (AL) function Lc(z; p) defined as

Lc(z; p) := L̃c(z; p) + h(z), (1.2)
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where L̃c(·; p) is the smooth part of (1.2) defined as

L̃c(z; p) := f(z) + ⟨p,Az − b⟩+ c

2∥Az − b∥
2 ∀z ∈ ℜn. (1.3)

More specifically, its rough description is as follows: given (zk−1, pk−1) ∈ H×ℜl and a pair of positive scalars
(λk, ck), it computes zk as a suitable approximate solution of the possibly nonconvex proximal subproblem

min
u

{
λkLck

(u; pk−1) + 1
2∥u− zk−1∥2

}
, (1.4)

and pk according to the full Lagrange multiplier update

pk = pk−1 + ck(Azk − b). (1.5)

every ⌈αkck⌉ iterations for some αk > 0. Hence, if αk= c−1
k , pk is updated every single iteration. Based on the

fact that (1.4) is strongly convex whenever the prox stepsize λk is chosen in (0, 1/mf ), the methods of [15,16]
set λk = 0.5/mf for every k and solve each strongly-convex subproblem using an accelerated composite
gradient (ACG) method (see for example [12,28,30]).

Our contributions: Since it is empirically observed that the larger λk is, the faster the procedure outlined
above in (1.4)-(1.5) approaches a desired approximate solution of (1.1), AS-PAL adaptively chooses the prox
stepsize λk to be a scalar which is usually much larger than 0.5/mf . As (1.4) may become nonconvex with such
a choice of λk, a standard ACG method applied to (1.4) may fail to obtain a desirable approximate solution
of (1.4). To remedy this situation, AS-PAL uses a new adaptive ACG method for solving (1.4) which accounts
for the fact that (1.4) may be nonconvex and the Lipschitz constant of the gradient of the objective function
of (1.4) may be unknown. Thus, in contrast to the methods of [15, 16], AS-PAL has the interesting feature
of requiring no knowledge of the parameters mf , Lf and Mh (see the first paragraph above) underlying (1.4)
in view of its ability to adaptively generate the prox stepsize λk and the estimate of the Lipschitz constant
of the gradient of the objective function of (1.4) within the adaptive ACG method. Moreover, as was shown
for the method of [15], under the assumption that a Slater point exists, it is also shown that, for any given
tolerance pair (ρ̂, η̂) ∈ ℜ2

++, AS-PAL finds a (ρ̂, η̂)-approximate stationary solution of (1.1), i.e., a triple
(z, p, w) satisfying

w ∈ ∇f(z) + ∂h(z) +A∗p, ∥w∥ ≤ ρ̂, ∥Az − b∥ ≤ η̂, (1.6)

in at most Õ(η̂−1/2ρ̂−2+ρ̂−3) (resp., Õ(η̂−1/2ρ̂−2+ρ̂−2.5)) iterations if αk = c−1
k (resp., αk = α for some α > 0)

for every k ≥ 1. Finally, a major advantage of AS-PAL is that it substantially improves the computational
performance of the methods in [15,16], whose performance was already substantially better than other existing
methods for solving (1.1). Our extensive computational results of section 4 show that AS-PAL can efficiently
compute highly accurate solutions for all problems tested, while the other methods can fail to do so in many
of these problems. AS-PAL can often find such solutions in just a few seconds or minutes while all the other
methods may take several hours to do so.

Literature review. We only focus on relatively recent papers dealing with the iteration complexity of
augmented Lagrangian (AL) type methods. In the convex setting, AL-based methods have been widely studied
for example in [1, 2, 19,20,25,26,29,32,35].

We now discuss AL type methods in the nonconvex setting of (1.1). Such methods typically perform a
Lagrange multiplier update of the form

pk = (1− θ)(pk−1 + χkck(Azk − b))

for θ ∈ [0, 1) and χk ∈ [0, 1] at every k ≥ 1. Various proximal AL methods for solving both linearly and
nonlinearly constrained SNCO problems have been studied in [6, 15, 16, 18, 27, 34, 37, 38, 39]. Unlike these
methods, AS-PAL is the first universal proximal AL method in that it requires no knowledge of of parameters
(e.g., size of constraint matrix, objective function curvatures, etc) associated with the optimization problem.
We now highlight some important distinctions between the aforementioned methods. More specifically, [6,18,27]
present proximal AL methods based on a perturbed augmented Lagrangian function and an under-relaxed
multiplier update. Papers [15,16] present an accelerated proximal AL method based off the classical augmented
Lagrangian function and a full multiplier update. The method in [34] is an AL-based method which reverses
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the direction of the multiplier update. Papers [37, 38, 39, 40] study AL type variants based on the Moreau
envelope. Finally, non-proximal AL methods for solving SNCO problems are studied in [21,33].

We now discuss papers that are tangentially related to this work. Penalty methods for SNCO problems
have been studied in [13, 14, 17, 24]. It is worth mentioning that AS-PAL extends the methods in [15, 16] by
allowing for an adaptive prox stepsize, similar to the way the method of [14] extends the one in [13]. Finally,
paper [9] studies a penalty-ADMM method that solves an equivalent reformulation of (1.1) while the paper [22]
presents an inexact proximal point method applied to the function defined as ϕ(z) if z is feasible and +∞
otherwise.

Before closing this literature review, we list the assumptions of some of the above methods in Table 1.1
and give a summary of these methods in Table 1.2, which compares these methods in terms of iteration
complexities, necessary conditions, and ranges that parameters θ and χk can take.

B Either (i) the quantity supx∈dom h |ϕ(x)| is finite, (ii) domh is bounded, and/or (iii) the
feasible set is bounded.

A If the constraints have an affine component of the form Ax = b then A has full row rank.

F There exists some ν > 0 such that ν∥Axk − b∥ ≤ dist(0, A∗(Axk −b) + c−1
k
∂h(xk)) for

generated iterates {xk}k≥1 and {ck}k≥1.

N The function h restricted to its domain is r-Lipschitz continuous.

SP There exists x̄ ∈ int(domh) such that Ax = b.

Table 1.1 Abbreviations for common boundedness and regularity conditions. It has been shown (see [16]) that N is equivalent
to requiring that, for every x ∈ dom h, there exists r > 0 such that that ∂h(x) ⊆ Ndom h(x) + Br where Br = {x : ∥x∥ ≤ r}.

Name Best Complexity λk θ χk Conditions

QP-AIPP [13] O(ε−3) Θ(m−1
f

) - - None

R-QP-AIPP [14] Õ(ε−3) (0,∞) - - B

iPPP [23] Õ(ε−5/2) O(m−1
f

) - - B,N ,SP

iALM (2019) [33] Õ(ε−3) - 0 O(c−1
k

) B,F

iALM (2020) [21] Õ(ε−5/2) - 0 O(c−1
k

) B,F

PProx-PDA1 [6] O(θ−2ε−4) O(θL−1
f

) (0, 1) 1 B, A

θ-IPAAL2 [27] Õ(θ−15/4ε−5/2) Θ(θm−1
f

) (0, 1) 1 N ,SP

IAIPAL [16] Õ(ε−5/2) Θ(m−1
f

) 0 {0, 1} B,N ,SP

AS-PAL Õ(ε−5/2) (0,∞) 0 {0, 1} B,N ,SP

Table 1.2 Comparison of penalty and AL-based methods with AS-PAL. For convenience, let ε = min{ρ̂, η̂}, and let Õ(·) be the
same as O(·) with all logarithmic dependencies on ε removed.

Organization of the paper. The paper is laid out as follows. Subsection 1.1 presents basic definitions
and notation used throughout the paper. Section 2 contains two subsections. The first describes the problem
of interest and the assumptions made on it. The second formally states the AS-PAL method and its main
complexity result. Section 3 is dedicated to proving the main complexity result. Section 4 presents exten-
sive computational experiments which demonstrate the efficiency of AS-PAL. The Appendix contains two
subsections. Appendix A presents the ADAP-FISTA algorithm which is used to solve possibly nonconvex
unconstrained subproblems while Appendix B presents technical results which are used to prove that the
sequence of the Lagrange multipliers generated by AS-PAL is bounded.

1.1 Basic Definitions and Notations

This subsection presents notation and basic definitions used in this paper.
1 This method generates prox subproblems of the form arg minx∈X{λh(x) + c∥Ax − b∥2/2 + ∥x − x0∥2/2} and the analysis

of [6] makes the strong assumption that they can be solved exactly for any x0, c, and λ.
2 It is also shown that conditions N and SP can be removed to yield a complexity of Õ(θ−7/2ε−3).
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Let ℜ+ and ℜ++ denote the set of nonnegative and positive real numbers, respectively. We denote by
ℜn an n-dimensional inner product space with inner product and associated norm denoted by ⟨·, ·⟩ and ∥ · ∥,
respectively. We use ℜl×n to denote the set of all l×n matrices and S+

n to denote the set of positive semidefinite
matrices in ℜn×n. The smallest positive singular value of a nonzero linear operator Q : ℜn → ℜl is denoted
by ν+

Q . For a given closed convex set Z ⊂ ℜn, its boundary is denoted by ∂Z and the distance of a point
z ∈ ℜn to Z is denoted by dist(z, Z). The indicator function of Z, denoted by δZ , is defined by δZ(z) = 0 if
z ∈ Z, and δZ(z) = +∞ otherwise. For any t > 0 and b ≥ 0, we let log+

b (t) := max{log t, b}, and we define
O1(·) = O(1 + ·).

The domain of a function h : ℜn → (−∞,∞] is the set dom h := {x ∈ ℜn : h(x) < +∞}. Moreover, h is
said to be proper if dom h ̸= ∅. The set of all lower semi-continuous proper convex functions defined in ℜn is
denoted by Conv ℜn. The ε-subdifferential of a proper function h : ℜn → (−∞,∞] is defined by

∂εh(z) := {u ∈ ℜn : h(z′) ≥ h(z) + ⟨u, z′ − z⟩ − ε, ∀z′ ∈ ℜn} (1.7)

for every z ∈ ℜn. The classical subdifferential, denoted by ∂h(·), corresponds to ∂0h(·). Recall that, for a given
ε ≥ 0, the ε-normal cone of a closed convex set C at z ∈ C, denoted by Nε

C(z), is

Nε
C(z) := {ξ ∈ ℜn : ⟨ξ, u− z⟩ ≤ ε, ∀u ∈ C}.

The normal cone of a closed convex set C at z ∈ C is denoted by NC(z) = N0
C(z). If ψ is a real-valued function

which is differentiable at z̄ ∈ ℜn, then its affine approximation ℓψ(·, z̄) at z̄ is given by

ℓψ(z; z̄) := ψ(z̄) + ⟨∇ψ(z̄), z − z̄⟩ ∀z ∈ ℜn. (1.8)

2 The AS-PAL method

This section consists of two subsections. The first one precisely describes the problem of interest and its
assumptions. The second one motivates and states the AS-PAL method and presents its main complexity
result.

2.1 Problem of Interest

This subsection presents the main problem of interest and discusses the assumptions underlying it.
Consider problem (1.1) where A : ℜn → ℜl, b ∈ ℜl and functions f, h : ℜn → (−∞,∞] satisfy the following

assumptions:

(C1) h ∈ Conv(ℜn) is Mh-Lipschitz continuous on H := dom h and the diameter

Dh := sup{∥z − z′∥ : z, z′ ∈ H}

of H is finite;
(C2) A is a nonzero linear operator and there exists z̄ ∈ int (H) such that Az̄ = b;
(C3) f is nonconvex and differentiable on ℜn, and there exists Lf ≥ mf > 0 such that for all z, z′ ∈ ℜn,

∥∇f(z′)−∇f(z)∥ ≤ Lf∥z′ − z∥, (2.1)

f(z′)− ℓf (z′; z) ≥ −mf

2 ∥z
′ − z∥2. (2.2)

2.2 The AS-PAL method

This subsection motivates and states the AS-PAL method and presents its main complexity result.
Recall from the introduction that the AS-PAL method, whose goal is to find a (ρ̂, η̂)-approximate stationary

solution as in (1.6), is an iterative method which, at its k-th step, computes a stepsize λk > 0, an approximate
solution zk of (1.4), and the next multiplier pk (see the second paragraph of the Introduction).

Before stating AS-PAL, we briefly motivate its steps below. First, as mentioned in the Introduction, AS-
PAL allows the prox stepsize λk to be large in the sense that it does not have to be in the interval (0, 1/mf )
where strong convexity of the objective function of (1.4) is guaranteed. Second, the purpose of steps 1 and 2
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of AS-PAL is to adaptively find the aforementioned triple (λk, zk, pk) using the accelerated gradient method,
namely, ADAP-FISTA described in Appendix A, with tentative choices of λk. More specifically, if ADAP-
FISTA with the current stepsize fails to generate a triple as above, the stepsize is halved and ADAP-FISTA is
once again called until it succeeds. Third, AS-PAL checks for successful termination in its step 3 (i.e. it checks
if the current iterate is a (ρ̂, η̂)-approximate stationary solution). Finally, step 4 provides a test for when to
increase the penalty parameter ck.

We are now ready to provide a complete description of the AS-PAL method. A detailed discussion of its
steps is given in the paragraphs following its description.

AS-PAL Method

Input: functions (f, h), scalars σ ∈ (0, 1/2), χ ∈ (0, 1), and β > 1, an initial prox stepsize λ0 > 0, an initial
point z0 ∈ H, an initial penalty parameter c0 > 0, a sequence of positive integers {dl}l≥1, and a tolerance pair
(ρ̂, η̂) ∈ ℜ2

++.
Output: a triple (z, p, w) satisfying (1.6).

0. set k = 1, l = 1, k1 = 1, and

p0 = 0, q0 = 0, λ = λ0, Cσ = 2(1− σ)2

1− 2σ , Mf
0 = λ0c0∥A∥2 + 1, (2.3)

and define
c̃l = 2l−1c0 ∀l ≥ 1; (2.4)

1. set ck = c̃l and choose M i
k ∈ [1,Mk] where

Mk := max{Mf
k−1, λ0ck∥A∥2 + 1} (2.5)

and call the ADAP-FISTA method described in Appendix A with inputs (χ, β, σ),

x0 = zk−1, (µ,L0) = (1/2,M i
k), (2.6)

ψs = λL̃ck
(·, pk−1) + 1

2∥ · −zk−1∥2, ψn = λh; (2.7)

2. if ADAP-FISTA fails or its output (z, u, L) (if it succeeds) does not satisfy the inequality

λLck
(zk−1, pk−1)−

[
λLck

(z, pk−1) + 1
2∥z − zk−1∥2

]
≥ ⟨u, zk−1 − z⟩, (2.8)

then set λ = λ/2 and go to step 1; else, set (λk,Mf
k ) = (λ, L), (zk, uk) = (z, u), and

wk := uk + zk−1 − zk
λk

, (2.9)

qk = pk−1 + ck(Azk − b), pk =
{
qk, k ≡ kl mod dl,
pk−1, otherwise,

(2.10)

and go to step 3;
3. if ∥wk∥ ≤ ρ̂ and ∥Azk−b∥ ≤ η̂, then stop with success and output (z, q, w) = (zk, qk, wk); else, go to step 4;
4. if k ≥ kl + 1 and

∆k := 1∑k
i=kl+1 λi

[Lck
(zkl

, pkl
)− Lck

(zk, pk)] ≤ max
{∑k

i=kl+1 λi∥wi∥2

2Cσ
∑k
i=kl+1 λi

,
ρ̂2

2Cσ

}
, (2.11)

then set kl+1 = k + 1 and l← l + 1;
5. set k ← k + 1, and go to step 1.
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We now introduce some basic terminology, definitions and remarks about AS-PAL. First, AS-PAL makes
two types of iterations, namely, the outer iterations indexed by k and the ACG iterations performed within
each ADAP-FISTA call in step 1. Second, it follows from Proposition A.1(a) that the total number of resolvent
evaluations3 made by ADAP-FISTA is on the same order of magnitude as its total number of ACG iterations.
Third, define the l-th cycle Cl as

Cl = {kl, . . . , kl+1 − 1} ∀l ≥ 1, (2.12)

where kl are the indices computed in step 4 of AS-PAL. The goal of the test (2.11) is to decide when to start
a new cycle. The test at the beginning of step 4 and the definition of kl + 1 in step 4 ensure that kl+1− kl ≥ 2
and hence that every cycle has at least two indices. The definition of c̃l in step 0 and the update rule for ck
in step 1 imply that

Cl := {k ≥ 1 : ck = c̃l} ∀l ≥ 1. (2.13)

Fourth, it is shown in Proposition 3.1(b) below that the output λk and (zk, uk) in step 2 of AS-PAL satisfies

∥uk∥ ≤ σ∥zk − zk−1∥, uk ∈ λk
[
∇zL̃ck

(zk; pk−1) + ∂h(zk)
]

+ zk − zk−1 (2.14)

where σ is part of the input of AS-PAL. Since (2.14) with σ = 0 reduces to the optimality condition for (1.4),
(zk, uk) can be viewed as an approximate stationary solution of (1.4) where the residual uk is relaxed from
being zero to a quantity that is now relatively bounded as in (2.14). Finally, it is shown in Proposition 3.1 below
that the triple (z, q, w) = (zk, qk, wk) computed in step 2 satisfies the inclusion in (1.6) for every k ≥ 1. As a
consequence, if AS-PAL terminates in step 3, then the triple (z, q, w) output by this step is a (ρ̂, η̂)-approximate
solution of (1.1).

The goal of steps 1 and 2 is to obtain a prox stepsize λk ≤ λk−1 and a pair (zk, uk) satisfying (2.8) and
(2.14). This is done by successively calling ADAP-FISTA with inputs given by (2.6) and (2.7), where the
first call is done with λ = λk−1 and subsequent ones with λ equal to the previous prox stepsize divided by
two. Since the condition that λ ≤ 0.5/mf implies that ψs in (2.7) is 1/2-strongly convex, it follows from
Proposition A.2 that an ADAP-FISTA call with such λ (and input as in (2.6) and (2.7)) always terminates
successfully with a pair (zk, uk) = (z, u) satisfying both (2.8) and (2.14). Thus, the above adaptive procedure
must eventually terminate. Even though some ADAP-FISTA calls may fail during the above procedure due
to λ being potentially large, its major appeal is that it generates a sequence of prox stepsizes {λk} which are
much larger than the conservative sequence where λk = 0.5/mf for every k ≥ 1. This feature seems to be a
strong contributor to the excellent practical performance of AS-PAL as demonstrated by our computational
results in Section 4.

AS-PAL as stated above is not fully determined as it does not specify how to choose M i
k in step 1 and

the sequence of positive integers {dl}l≥1 used in update (2.10). We now specify possible choices for these two
quantities. Step 1 provides a wide range of values to choose M i

k from, namely, [1,Mk] where Mk is as in
(2.5). Our implementation of AS-PAL in section 4 sets M i

k equal to Mf
k−1 which, in view of (2.5), is clearly

in the above interval. Two possible choices for the sequence {dl}l≥1 are described in Lemma 2.1 below and
the complexities of AS-PAL with these choices of dl are given in the paragraph following Theorem 2.2. The
complexity established in this result holds though for an arbitrary sequence of positive integers {dl}.

It is interesting to note that AS-PAL is a universal method in the sense that it does not require any
knowledge of the parameters mf , Lf , and Mh associated with (f, h). Moreover, if M i

k is chosen as above, it
does not even require the computation of ∥A∥, and hence of the maximum eigenvalue of AA∗.

In the remaining part of this section, we state the main complexity result for AS-PAL, whose proof is the
main focus of Section 3. Before stating the main result, we first introduce the following quantities:

ϕ∗ := inf
z∈ℜn

ϕ(z), d̄ := dist(z̄, ∂H), λ := min{λ0, 1/(4mf )} (2.15)

∇f := sup
z∈H
|∇f(z)|, κp := 2Dh(Mh +∇f + λ−1(1 + σ)Dh)

d̄ν+
A

(2.16)

S := sup
z∈H
|ϕ(z)|, κd := S +

9κ2
p

2c0
− ϕ∗, (2.17)

3 A resolvent evaluation of h is an evaluation of (I + γ∂h)−1(·) for some γ > 0.
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where λ0, c0, and σ are input parameters for AS-PAL, (mf , Lf ) are as in (C3), z̄ is as in (C2), Mh is as in
(C1), Dh is as in (C1), and ν+

A is as in Subsection 1.1. Note that assumptions (C1) and (C3) imply that S
and ∇f are finite.

Before stating the main result for AS-PAL, we introduce a quantity ĉ(ρ̂, η̂) which is used to express the
complexity of AS-PAL. Indeed, define ĉ(ρ̂, η̂) as the smallest c̃l such that

c̃l ≥ max
{

2κp
η̂
,

8Cσκ2
p

dlλρ̂2

}
, (2.18)

where c̃l is as in (2.4), and Cσ, λ, and κp, are as in (2.3), (2.15), and (2.16), respectively.
The following simple result describes useful properties about ĉ for two choices of {dl}.

Lemma 2.1 The following statements hold:
(a) if dl = 1 for all l ≥ 1, then

ĉ(ρ̂, η̂) ≤ max
{

4κp
η̂
,

16Cσκ2
p

λρ̂2 , c0

}
; (2.19)

(b) if, for some α > 0, dl = ⌈αc̃l⌉ for all l ≥ 1, then

ĉ(ρ̂, η̂) ≤ max

4κp
η̂
,

4
√

2Cσκ2
p/(λα)

ρ̂
, c0

 . (2.20)

Proof For simplicity, denote ĉ(ρ̂, η) by ĉ.
(a) The proof of (a) is obvious.
(b) If ĉ = c̃1, then ĉ = c1 = c0, and hence (2.20) holds. Otherwise, in view of the definition of ĉ, it follows

that c̃l = ĉ/2 violates (2.18), i.e.,

ĉ < 2 max
{

2κp
η̂
,

8Cσκ2
p

λρ̂2 ⌈α(ĉ/2)⌉

}
,

due to the assumption that dl = ⌈αc̃l⌉. Relation (2.20) now immediately from the above inequality.
Thus, it follows from the above result that, in terms of the tolerances only, ĉ(ρ̂, η̂) is

O1(ρ̂−1 + η̂−1) if dl = Θ(c̃l),
O1(ρ̂−2 + η̂−1) if dl = Θ(1).

The following result describes the ACG iteration/resolvent evaluation complexity for AS-PAL.

Theorem 2.2 Let a tolerance pair (ρ̂, η̂) ∈ ℜ2
++ be given and consider the quantity ĉ(ρ̂, η̂) defined just before

Lemma 2.1. Moreover, assume that the initial prox stepsize λ0 of AS-PAL satisfies

λ0 = Ω(m−1
f ), log+

0 (mfλ0) ≤ O(1 + κd/(λρ̂2)),

where mf is as in (C3), λ is as in (2.15), and κd is as in (2.17). Then, AS-PAL outputs a (ρ̂, η̂)-approximate
stationary solution of (1.1) in

O

([
1 + mfκd

ρ̂2

]√
Mλ0(ĉ)

[
log+

1

(
Mλ0(ĉ) + ĉ

c0

)]2
)

(2.21)

ACG iterations/resolvent evaluations, where ĉ := ĉ(ρ̂, η̂) and

Mλ(c) := 1 + λ(Lf + c∥A∥2) ∀c, λ ∈ ℜ. (2.22)

Before ending this subsection, we specialize bound (2.21) for the two choices of sequences {dl} as in
Lemma 2.1. Indeed, Lemma 2.1 and the definition of Mλ(c) in (2.22) imply that bound (2.21) reduces to

Õ1(ρ̂−5/2 + ρ̂−2η̂−1/2) if dl = Θ(c̃l),
Õ1(ρ̂−3 + ρ̂−2η̂−1/2) if dl = Θ(1).

Even though setting dl = 1 results in a slightly worse complexity, we have observed that performing a Lagrange
multiplier update at every iteration results in more efficient computational performance.



8 Arnesh Sujanani, Renato D.C. Monteiro

3 Proof of Theorem 2.2

This section is dedicated to proving Theorem 2.2.
The first proposition below shows that, in every iteration of AS-PAL, the loop within steps 1 and 2 always

stops and shows key properties of its output.

Proposition 3.1 The following statements about AS-PAL hold for every k ≥ 1:

(a) the function ψs in (2.7) has Mλ0(ck)-Lipschitz continuous gradient everywhere on ℜn, and hence L̄ =
Mλ0(ck) satisfies (A.2);

(b) the loop within steps 1 and 2 of its k-th iteration always ends and the output (zk, uk, wk, qk, pk, λk,Mf
k )

obtained at the end of step 2 satisfies (2.14) and

(
1− σ
σ

)
∥uk∥ ≤ ∥λkwk∥ ≤ (1 + σ)∥zk − zk−1∥; (3.1)

λkLck
(zk−1, pk−1)−

[
λkLck

(zk, pk−1) + 1
2∥zk − zk−1∥2

]
≥ ⟨uk, zk−1 − zk⟩; (3.2)

wk ∈ ∇f(zk) + ∂h(zk) +A∗qk; (3.3)

Mf
k ≤ max{M i

k, ωMλ0(ck)}; (3.4)
λ0 ≥ λk ≥ λ, (3.5)

where ω = 2β/(1− χ), λ0 is the initial prox stepsize, and λ is as in (2.15); moreover, every prox stepsize
λ generated within the aforementioned loop is in [λ, λ0].

Proof (a) Using inequality (2.1) and the definition of Lck
(·; pk−1) in (1.2) we easily see that its smooth part,

namely, Lck
(·; pk−1)−h(·), has (Lf +ck∥A∥2)-Lipschitz continuous gradient everywhere on ℜn. Hence, in view

of the definitions of ψs in (2.7) and Mλ(·) in (2.22), and the fact that λ ≤ λ0, we conclude that (a) holds.
(b) We first claim that if the loop consisting of steps 1 and 2 of the k-iteration of AS-PAL stops, then

(2.14), (3.1), (3.2), (3.3), and (3.4) hold. Indeed, assume that the loop consisting of steps 1 and 2 of the
k-th iteration of AS-PAL stops. It then follows from the logic within step 1 and 2 of AS-PAL that the last
ADAP-FISTA call within the loop stops successfully and (3.2) holds. Since (a) implies that L̄ = Mλ0(ck)
satisfies relation (A.2), it follows Proposition A.1(b) with (ψs, ψn) as in (2.7), x0 = zk−1, and L0 = M i

k that
the triple (zk, uk,Mf

k ) = (y, u, L) satisfies the inequality in (2.14), relation (3.4), and the inclusion in (2.14)

uk ∈ λk[∇f(zk) + ∂h(zk) +A∗qk] + zk − zk−1.

Now, using the definition of wk in (2.9), we easily see that the above inclusion is equivalent to (3.3) and that
the inequality in (2.14) together with the triangle inequality for norms imply the two inequalities in (3.1).

We now claim that if step 1 is performed with a prox stepsize λ ≤ 1/(2mf ) in the k-th iteration, then
for every j > k, we have that λj−1 = λ and the j-th iteration performs step 1 only once. To show the
claim, assume that λ ≤ 1/(2mf ). Using this assumption, the definition of Lc in (1.2), and the assumption
(2.2) that f is mf -weakly convex, we see that the function ψs in (2.7) is strongly convex with modulus
1− λmf ≥ 1/2. Since each ACG call is performed in step 1 of AS-PAL with µ = 1/2, it follows immediately
from Proposition A.2 with (ψs, ψn) as in (2.7) that ADAP-FISTA terminates successfully and outputs a pair
(z, u) satisfying u ∈ ∂(ψs+ψn)(z). This inclusion, the definition of (ψs, ψn), and the definition of subdifferential
in (1.7), then imply that (2.8) holds. Hence, in view of the termination criteria of step 2 of AS-PAL, it follows
that λk = λ. It is then easy to see, by the way λ is updated in step 2 of AS-PAL, that λ is not halved in the
(k + 1)-th iteration or any subsequent iteration, hence proving the claim.

It is now straightforward to see that the above two claims, the fact that the initial value of the prox stepsize
is equal to λ0, and the way λk is updated in AS-PAL, imply that the lemma holds.

The main goal of the following result is to establish a bound on the number of ACG iterations performed
by each ADAP-FISTA call in step 1 of AS-PAL.

Proposition 3.2 The following statements about AS-PAL hold for any k ≥ 1:
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(a) the quantity Mk as in (2.5) satisfies
Mk ≤ ωMλ0(ck)

where ω = 2β/(1− χ);
(b) every ACG call in step 1 of the k-th iteration of AS-PAL performs

O1

(√
Mλ0(ck) log+

1 Mλ0(ck)
)

(3.6)

ACG iterations/resolvent evaluations.

Proof (a) The inequality with k = 1 is immediate due to the last equality in (2.3), the fact that ω > 1, and
the definition of M1 in (2.5). It now suffices to show that Mk ≤ max{Mk−1, ωMλ0(ck)} for every k ≥ 2 since
this claim, the facts that ck ≤ ck+1 and M1 ≤ ωMλ0(c1), and a simple induction argument, imply that the
inequality holds for every k ≥ 2. To show this claim, assume that k ≥ 2. It follows from the definition of Mk,
relation (3.4), and the definition of Mλ(·) in (2.22), that

Mk = max{Mf
k−1, λ0ck∥A∥2 + 1} ≤ max{M i

k−1, ωMλ0(ck)}.

The claim now follows from the fact that step 1 chooses M i
k−1 in the interval [1,Mk−1].

(b) First note that Proposition 3.1(a) implies that L̄ =Mλ0(ck) satisfies (A.2). Moreover, it follows from
statement (a) and the fact that M i

k ≤Mk that M i
k = O(Mλ0(ck)). Since each ADAP-FISTA call in step 1 is

made with (µ,L0) = (1/2,M i
k), it then follows from Proposition A.1(a) that (b) holds.

The subsequent technical result characterizes the change in the augmented Lagrangian function between
consecutive iterations of the AS-PAL method.

Lemma 3.3 For every k ≥ 1, we have:

Lck
(zk, pk)− Lck

(zk, pk−1) = 1
ck
∥pk − pk−1∥2, (3.7)

and

λk
Cσ
∥wk∥2 ≤ Lck

(zk−1, pk−1)− Lck
(zk, pk) + 1

ck
∥pk − pk−1∥2 (3.8)

where Cσ is as in (2.3).

Proof Identity (3.7) follows immediately from the definition of the Lagrangian in (1.2) and the second relation
in (2.10). Now, using relation (3.2), the first inequality in (3.1), and the definitions of Cσ and wk in (2.3) and
(2.9), respectively, we conclude that:

λkLck
(zk−1, pk−1)− λkLck

(zk, pk−1)
(3.2)
≥ 1

2∥zk − zk−1∥2 + ⟨uk, zk−1 − zk⟩

= 1
2∥zk−1 − zk + uk∥2 − 1

2∥uk∥
2 (2.9)= 1

2∥λkwk∥
2 − 1

2∥uk∥
2

(3.1)
≥ 1

2∥λkwk∥
2 − σ2

2(1− σ)2 ∥λkwk∥
2 = 1− 2σ

2(1− σ)2 ∥λkwk∥
2 (2.3)= ∥λkwk∥2

Cσ
. (3.9)

Inequality (3.8) now follows by dividing (3.9) by λk and combining the resulting inequality with (3.7).
The result below, which establishes boundedness of the sequence of Lagrange multipliers, makes use of a

technical result in the Appendix, namely Lemma B.3.

Proposition 3.4 The sequences {qk} and {pk} generated by AS-PAL satisfy

∥qk∥ ≤ κp, ∥pk∥ ≤ κp (3.10)

where κp is defined in (2.16).
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Proof Using the second inequality in (3.1), the triangle inequality, the second inequality in (3.5), and the
definitions of Dh and ∇f in (C1) and (2.16), respectively, we conclude that

∥wk −∇f(zk)∥
(3.1)
≤ 1

λk
(1 + σ)∥zk − zk−1∥+∇f

(3.5)
≤ Dh(1 + σ)

λ
+∇f . (3.11)

Now, using the inclusion in (3.3), the relation in (3.11), Lemma B.3(b) with (z, q, r) = (zk, qk, wk −∇f(zk))
and q− = pk−1, and the definition of κp in (2.16), we conclude that for every k ≥ 1:

∥qk∥
(B.4)
≤ max

{
∥pk−1∥,

2Dh(Mh + ∥wk −∇f(zk)∥)
d̄ν+
A

}
(3.11)
≤ max {∥pk−1∥, κp} . (3.12)

We now use an induction argument to show that (3.10) holds. Indeed, (3.10) holds for k = 0 since p0 = 0
and q0 = 0 in view of step 0 of AS-PAL. Suppose then that (3.10) holds for k = k − 1. The relation in (3.12)
together with the induction hypothesis then immediately imply that ∥qk∥ ≤ max {∥pk−1∥, κp} = κp. Since pk
is equal to either qk or pk−1 in view of the second identity in (2.10), we also conclude that ∥pk∥ ≤ κp.

Recall that the l-th cycle Cl of AS-PAL is defined in (2.13). The following result shows that the sequence
{∥∥wk∥}k∈Cl

is bounded and can be controlled by {∆k}k∈Cl
plus a term which is O(1/dlc̃l).

Lemma 3.5 Consider the sequences {(zk, pk, wk)}k∈Cl
and {∆k} generated by AS-PAL. Then, for every k ∈ Cl

such that k ≥ kl + 1, we have: ∑k
i=kl+1 λi∥wi∥2∑k

i=kl+1 λi
≤ Cσ

(
∆k +

4κ2
p

λdlc̃l

)
(3.13)

where Cσ, λ, and κp are as in (2.3), (2.15), and (2.16), respectively and kl is the first index in Cl.

Proof For k ∈ Cl, define I(k) := {i : pi ̸= pi−1, kl + 1 ≤ i ≤ k}. It is easy to see from the update rule for pk in
(2.10) that |I(k)| ≤ (k− kl)/dl. Moreover, the bound on pk in (3.10) and the relation (a+ b)2 ≤ 2a2 + 2b2 for
a, b ∈ R imply that ∥pj − pj−1∥2 ≤ 2∥pj∥2 + 2∥pj−1∥2 ≤ 4κ2

p. It then follows from the previous two bounds
that for any k ∈ Cl,

k∑
i=kl+1

∥pi − pi−1∥2 =
∑
i∈I(k)

∥pi − pi−1∥2 ≤
4(k − kl)κ2

p

dl
. (3.14)

Hence, summing inequality (3.8) from kl + 1 to k, relation (3.14), and the fact that ck = c̃l for every k ∈ Cl,
imply that, for any k ∈ Cl such that k ≥ kl + 1, there holds

1
Cσ

k∑
i=kl+1

λi∥wi∥2
(3.8)
≤

k∑
i=kl+1

[
Lci(zi−1, pi−1)− Lci(zi, pi) + 1

ci
∥pi − pi−1∥2

]
j∈Cl=

k∑
i=kl+1

[
Lc̃l

(zi−1, pi−1)− Lc̃l
(zi, pi) + 1

c̃l
∥pi − pi−1∥2

]

= Lc̃l
(zkl

, pkl
)− Lc̃l

(zk, pk) + 1
c̃l

k∑
i=kl+1

∥pi − pi−1∥2

(3.14)
≤ Lc̃l

(zkl
, pkl

)− Lc̃l
(zk, pk) +

4(k − kl)κ2
p

dlc̃l

=
(

k∑
i=kl+1

λi

)
∆k +

4(k − kl)κ2
p

dlc̃l
,

where the last equality follows from the definition of ∆k in (2.11). Now, using the above bound, and (3.5) we
have: ∑k

i=kl+1 λi∥wi∥2∑k
i=kl+1 λi

≤ Cσ

(
∆k +

4(k − kl)κ2
p

dlc̃l
∑k
i=kl+1 λi

)
(3.5)
≤ Cσ

(
∆k +

4κ2
p

λdlc̃l

)
,

which immediately implies the result.
The next result establishes bounds on ∥Azk − b∥ and on the quantity ∆k defined in (2.11).
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Lemma 3.6 Consider the sequence of iterates {(zk, ck, pk)}k∈Cl
generated during the l-th cycle of AS-PAL

and let ∆k be as in (2.11). Then, for every k ∈ Cl,

(a) we have

∥Azk − b∥ ≤
2κp
c̃l

; (3.15)

(b) if additionally k ≥ kl + 1, then
∆k ≤

κd∑k
i=kl+1 λi

, (3.16)

where κd is as in (2.17) and kl denotes the first index in Cl.

Proof (a) Let k ∈ Cl. Using the update for qk in (2.10), the triangle inequality, and the bounds on qk and pk
in (3.10), we have

∥Azk − b∥
(2.10)= ∥qk − pk−1∥

ck

k∈Cl

≤ ∥qk∥+ ∥pk−1∥
c̃l

(3.10)
≤ 2κp

c̃l
,

which immediately proves (3.15).
(b) Recall from (2.13) that Cl := {k : ck = c̃l := 2l−1c0}. Then, using the Cauchy-Schwarz inequality, the

definition of the Lagrangian function in (1.2), the definition of S in (2.17), the bound on pk in (3.10), relation
(3.15), and the fact that c̃l ≥ c0, we have

Lc̃l
(zkl

, pkl
) ≤ S + ∥pkl

∥∥Azkl
− b∥+ c̃l

2 ∥Azkl
− b∥2

(3.15)
≤ S + ∥pkl

∥
(

2κp
c̃l

)
+

2κ2
p

c̃l

(3.10)
≤ S +

4κ2
p

c0
. (3.17)

Let k ∈ Cl be such that k ≥ kl + 1. Using the bound on pk in (3.10), the fact that c̃l ≥ c0, the definition of ϕ∗
in (2.15), and completing the square, we have:

Lc̃l
(zk, pk)− ϕ∗ ≥ Lc̃l

(zk, pk)− (f + h)(zk) = 1
2

∥∥∥∥ pk√c̃l +
√
c̃l(Azk − b)

∥∥∥∥2
− ∥pk∥

2

2c̃l

(3.10)
≥ −

κ2
p

2c0
. (3.18)

Hence, it follows from the definition of ∆k in (2.11) and relations (3.17) and (3.18) that

∆k = 1∑k
i=kl+1 λi

(Lc̃l
(zkl

, pkl
)− Lc̃l

(zk, pk)) ≤ 1∑k
i=kl+1 λi

(
S +

9κ2
p

2c0
− ϕ∗

)
.

Thus, (3.16) immediately follows from the definition of κd in (2.17).
The following result establishes bounds on the number of ACG and outer iterations performed during

an AS-PAL cycle and shows that AS-PAL outputs a (ρ̂, η̂)-approximate stationary solution of (1.1) within a
logarithmic number of cycles.

Proposition 3.7 The following statements about AS-PAL hold:

(a) every cycle performs at most ⌈
2 + 2Cσκd

λρ̂2

⌉
(3.19)

outer iterations, where λ, κd, and Cσ are as in (2.15), (2.17), and (2.3) respectively; moreover, if λ0 is
such that λ0 = Ω(m−1

f ) and log+
0 (mfλ0) ≤ O(1 + κd/(λρ̂2)), then the number of ACG calls within an

arbitrary cycle is O(1 +mfκd/ρ̂
2);

(b) any cycle l generated by AS-PAL has the property that its penalty parameter c̃l satisfies c̃l ≤ ĉ(ρ̂, η̂) where
ĉ(ρ̂, η̂) is as in (2.18); as a consequence, the number of cycles of AS-PAL is bounded by

log+
1

(
2ĉ(ρ̂, η̂)
c0

)
(3.20)

where c0 is the initial penalty parameter for AS-PAL.
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Proof (a) Fix a cycle l and let kl denote the first index in Cl (see (2.12)). If some k ∈ Cl is such that

k > kl + 2Cσκd
λρ̂2 (3.21)

then

∆k

(3.16)
≤ κd∑k

i=kl+1 λi

(3.5)
≤ κd

λ(k − kl)
(3.21)
≤ ρ̂2

2Cσ
, (3.22)

which clearly implies that ∆k satisfies inequality (2.11) and hence that the l-th cycle ends at or before the k-th
iteration. Hence, the first part of (a) follows immediately from this conclusion. To prove the second part, first
note that the number of times λ is divided by 2 in step 2 of AS-PAL is at most ⌈log+

0 (λ0/λ)/ log 2⌉, in view
of the last conclusion of Proposition 3.1. This observation, the conclusion of the first part, the two conditions
imposed on λ0, and the definition of λ in (2.15), then imply that the number of ACG calls within an arbitrary
cycle is O(1 +mfκd/ρ̂

2).
(b) Assume by contradiction that AS-PAL generates a c̃l such that c̃l > ĉ(ρ̂, η̂). This assumption and the

definition of ĉ(ρ̂, η̂) in (2.18) then imply that l > 1 and c̃l−1 ≥ ĉ(ρ̂, η̂). It follows from this observation together
with Lemma 3.6(a) with l = l − 1 that for every k ∈ Cl−1,

∥Azk − b∥
(3.15)
≤ 2κp

c̃l−1

(2.18)
< η. (3.23)

This implies that mini∈Cl−1 ∥wi∥ > ρ̂ in view of the fact that AS-PAL does not stop succcesfully in step 3 of
its (l − 1)-th cycle. Letting kl−1 denote the first index of the (l − 1)-th cycle, this conclusion together with
Lemma 3.5 with l = l − 1 then imply that

ρ̂2 <

∑k
i=kl−1+1 λi∥wi∥2∑k

i=kl−1+1 λi
≤ Cσ

(
∆k +

4κ2
p

λdl−1c̃l−1

)
≤ Cσ∆k + ρ̂2

2 ,

where the third inequality follows from the fact that c̃l−1 satisfies (2.18). Using this last conclusion, we can
easily see that (2.11) is violated for every k ∈ Cl−1 such that k ≥ kl−1 + 1, a conclusion that contradicts the
fact that the (l − 1)-th cycle terminated in step 4 of AS-PAL.

We are now ready to prove Theorem 2.2.

Proof (of Theorem 2.2) First, note that the assumptions that λ0 = Ω(m−1
f ), log+

0 (mfλ0) ≤ O(1 + κd/(λρ̂2)),
the definition of λ in (2.15), and the second conclusion of Proposition 3.7(a) imply that every cycle of AS-
PAL performs O(1 + mfκd/ρ̂

2) ACG calls. Second, Proposition 3.7(b) implies that c̃l ≤ ĉ and hence that
Mλ0(c̃l) ≤ Mλ0(ĉ) in view of the definition of Mλ(·) in Theorem 2.2. The result then immediately follows
from the above observations, Proposition 3.2(b) with ck = c̃l, and the bound (3.20) on the number of cycles
performed by AS-PAL.

4 Numerical Experiments

This section showcases the numerical performance of AS-PAL against five other benchmark algorithms for
solving five classes of linearly-constrained SNCO problems. It contains three subsections. The first presents
the numerical results of the algorithms on three different linearly-constrained SNCO matrix problems. The
second presents the numerical results of the algorithms on two different linearly-constrained SNCO vector
problems. The last subsection contains comments about the numerical results.

We have implemented two different more aggressive variants of AS-PAL, which we refer to as ASL and
ASL-2. The details of both variants are described as follows. First, both variants differ from AS-PAL in that
they allow the prox stepsize to be doubled in step 5 of any iteration if it has not been halved in step 2 and the
number of iterations performed by its ACG call in step 1 has not exceeded a pre-specified number. Second,
since the prox stepsize is allowed to increase in these variants, the initial prox stepsize is taken to be relatively
small. Third, our implementation chooses the following values for the input parameters of ASL and ASL-2:

σ = 0.1, µ = 1/4, χ = 0.001, β = 1.25, p0 = 0.
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Fourth, as mentioned in Section 2.2, ASL and ASL-2 set M i
k equal to Mf

k−1. Finally, the key difference between
ASL and ASL-2 is that ASL performs a Lagrange multiplier update at each of its outer iterations while ASL-2
performs a Lagrange multiplier update every few iterations. More specifically, for every cycle l ≥ 1, ASL (resp.,
ASL-2) chooses the scalar dl in (2.10) as dl = 1 (resp., dl = c̃l).

The two variants of our method are bench-marked against the following five algorithms. Specifically, ASL
and ASL-2 are bench-marked against the iALM method of [21], two variants of the S-prox-ALM of [38, 39]
(nicknamed SPA1 and SPA2), the dampened augmented Lagrangian method of [18] (nicknamed ADL), the
inexact proximal augmented Lagrangian method of [16] (nicknamed IPL), and the relaxed quadratic penalty
method of [14] (nicknamed RQP). We next describe the implementation details of each of these five algorithms.
The implementation of iALM chooses the parameters σ, β0, w0, y0, and γk as

σ = 5, β0 = 1, w0 = 1, y0 = 0, γk = (log 2) ∥Ax1∥
(k + 1) [log(k + 2)]2

,

for every k ≥ 1. Furthermore, the implementation of iALM uses the ACG subroutine called APG. The starting
point for the kth APG call is the prox center for the kth prox subproblem. The implementations of SPA1 and
SPA2 choose the parameters α, p, c, β, y0, and z0 as

α = Γ

4 , p = 2(Lf + Γ∥A∥2), c = 1
2(Lf + Γ∥A∥2) , β = 0.5, y0 = 0, z0 = x0,

where Γ = 1 in SPA1 and Γ = 10 in SPA2. ADL sets its initial prox stepsize λ0 = 10, its initial penalty
parameter c0 = 1, and its parameters (σ, χ, θ) = (0.3, 1/6, 1/2). The implementation of IPL sets σ = 0.3,
initial penalty parameter c0 = 1, and constant prox stepsize λ = 1/(2mf ). RQP uses the AIPPv2 variant
in [14] with initial prox stepsize λ0 = 1/mf , σ = 0.3, and parameters (θ, τ) = (4, 10 [λLf + 1]). Finally, note
that IPL and RQP solve each prox subproblem using the ACG variant in [28] with an adaptive line search for
the ACG variant’s stepsize parameter as described in [10].

We describe the type of solution each of the methods aims to find. That is, given a linear operator A,
functions f and h satisfying assumptions described in Subsection 2.1, an initial point z0 ∈ H, and tolerance
pair (ρ̂, η̂) ∈ ℜ2

++, each of the methods aims to find a triple (z, p, w) satisfying:

w ∈ ∇f(z) + ∂h(z) +A∗p,
∥w∥

1 + ∥∇f(z0)∥ ≤ ρ̂,
∥Az − b∥

1 + ∥Az0 − b∥
≤ η̂, (4.1)

where ∥ · ∥ signifies the Euclidean norm when solving vector problems and the Frobenius norm when solving
matrix problems.

The tables below report the runtimes and the total number of ACG iterations needed to find a triple
satisfying (4.1). The bold numbers in the tables of this section indicate the algorithm that performed the best
for that particular metric (i.e. runtime or ACG iterations). It will be seen in the following subsections that
the adaptive methods ASL, ASL-2, and RQP are the most consistent ones among all the methods considered.
More specifically, within the specified time limit for each problem class, ASL and ASL-2 converged in all
instances considered in our experiments while RQP converged in approximately 88% of them. To compare
ASL and RQP on a particular problem class more closely, we also report in each table caption the following
average time ratio (ATR) between these two methods defined as

ATR = 1
N

N∑
i=1

ai/ri, (4.2)

where N is the number of class instances that both methods were able to solve and ai and ri are the runtimes
of ASL and RQP for instance i, respectively.

Finally, we note that all experiments were performed in MATLAB 2020a and run on a Macbook Pro with
8-core Intel Core i9 processor and 32 GB of memory. All codes for these experiments are also available online4.

4 See https://github.com/asujanani6/AS-PAL.

https://github.com/asujanani6/AS-PAL
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4.1 Linearly-Constrained SNCO Matrix Problems

This subsection compares ASL and ASL-2 against the methods iALM, IPL, ADL, and RQP on three different
linearly-constrained SNCO matrix problems. It is divided into three sub-subsections with each one dealing
with a specific linearly-constrained SNCO problem.

We now make some remarks about the experiments of this subsection. The two variants SPA1 and SPA2
of [38, 39] are not included in our benchmark of this subsection since they are only guaranteed to converge
when h is the indicator function of a polyhedron, a condition which does not apply to any of the problems
considered in this subsection. Also, since § 4.1.3 considers a slight generalization of the linearly-constrained
SNCO problem (1.1) where the linear constraints Ax = b are replaced with the more general set linear
constraints Ax ∈ S, we have slightly modified the codes for ASL and ASL-2 to handle these more general
constraints and then compared them with RQP since it is the only other method whose code can currently
solve this extended formulation.

4.1.1 Sparse PCA

This § 4.1.1 considers the sparse principal components analysis problem studied in [5]. That is, given integer
k, positive scalar pair (ϑ, b) ∈ ℜ2

++, and matrix Σ ∈ Sn+, consider the following sparse principal component
analysis (PCA) problem:

min
Π,Φ

⟨Σ,Π⟩F +
n∑

i,j=1
qϑ(Φij) + ϑ

n∑
i,j=1

|Φij |

s.t. Π − Φ = 0, (Π,Φ) ∈ Fk ×ℜn×n

where Fk = {M ∈ Sn+ : 0 ⪯M ⪯ I, trM = k} denotes the k–Fantope and qϑ is the minimax concave penalty
(MCP) function given by

qϑ(t) :=
{
−t2/(2b), if |t| ≤ bϑ,
bϑ2/2− ϑ|t|, if |t| > bϑ,

∀t ∈ ℜ.

Parameters Iteration Count/Runtime (seconds)

(k,mf , Lf ) iALM IPL ADL RQP ASL ASL-2

(5,125,125) */* 1438/14.84 6674/29.34 377974/2037.71 376/0.86 817/1.78

(10,125,125) */* 1559/8.33 */* 44194/211.82 485/1.07 437/1.06

(20,125,125) */* 1400/7.02 28040/158.96 14229/72.78 489/1.10 506/1.11

(5,200,200) */* 6555/43.98 */* 282559/1478.51 516/1.15 366/0.88

(10,200,200) */* 7470/47.53 */* 12335/85.69 513/1.11 447/0.99

(20,200,200) */* 20132/118.99 */* 61016/319.77 421/0.96 519/1.15

(5,250,250) */* 10391//44.25 5766/25.68 350333/1300.26 523/1.10 535/1.15

(10,250,250) 211991/574.91 32566/175.81 */* 143796/943.87 645/1.38 915/1.94

(20,250,250) 236490/628.55 199353/985.49 */* */* 486/1.08 815/1.90

(5,103,103) */* 567358/2873.66 12717/52.65 */* 918/1.91 995/2.13

(10,103,103) */* */* */* */* 759/1.70 1234/2.81

(20,103,103) */* */* 52557/236.03 */* 1626/3.41 2252/4.71

Table 4.1 Iteration counts and runtimes (in seconds) for the Sparse PCA problem in § 4.1.1. The tolerances are set to 10−5.
Entries marked with * did not converge in the time limit of 3600 seconds. The ATR metric is 0.0050.

For our experiments in this subsection, we choose ϑ = 100 and allow b to vary. Observe that the curvature
parameters are mf = Lf = 1/b. We also generate the matrix Σ according to an eigenvalue decomposition
Σ = PΛPT , based on a parameter pair (s, k), where k is as in the problem description and s is a positive
integer. Specifically, we choose Λ = (100, 1, ..., 1), the first column of P to be a sparse vector whose first s
entries are 1/

√
s, and the other entries of P to be sampled randomly from the standard Gaussian distribution.

For our experiments, we fix s = 5 and allow k to vary. Also, for every problem instance, the initial starting
point is chosen as (Π0, Φ0) = (Dk, 0) where Dk is a diagonal matrix whose first k entries are 1 and whose
remaining entries are 0.
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Parameters Outer Iterations/Average Inner Iterations

(k,mf , Lf ) IPL ADL RQP ASL ASL-2

(5,125,125) 52/27.65 58/115.07 960/393.72 26/14.46 30/27.23

(10,125,125) 59/26.42 */* 943/46.87 27/17.96 28/15.61

(20,125,125) 48/29.17 39/718.97 447/31.83 28/17.46 30/16.87

(5,200,200) 84/78.04 */* 86983/3.25 26/19.85 28/13.07

(10,200,200) 170/43.94 */* 671/18.38 27/19 30/14.9

(20,200,200) 167/120.55 */* 291/209.68 29/14.52 31/16.74

(5,250,250) 248/41.90 67/86.06 110293/3.18 27/19.37 28/19.11

(10,250,250) 1544/21.09 */* 365/393.96 27/23.89 28/32.68

(20,250,250) 10842/18.39 */* */* 29/16.76 31/26.29

(5,103,103) 34515/16.44 234/54.35 */* 29/31.66 31/32.10

(10,103,103) */* */* */* 29/26.17 32/38.56

(20,103,103) */* 40/1313.93 */* 30/54.20 32/70.38

Table 4.2 Number of outer iterations and average number of inner iterations per outer iteration for the Sparse PCA problem in
§ 4.1.1.

We now describe the specific parameters that ASL, ASL-2, and RQP choose for this class of problems.
ASL, ASL-2, and RQP choose the initial penalty parameter, c0 = 1. Both ASL and ASL-2 allow the prox
stepsize to be doubled at the end of an iteration if the number of iterations by its ACG call does not exceed
4. Finally, ASL and ASL-2 also take M1

0 defined in step 1 of AS-PAL to be 1 and the initial prox stepsize to
be 20/mf .

The numerical results are presented in Table 4.1. Table 4.1 compares ASL and ASL-2 with four of the
benchmark algorithms namely, iALM, IPL, ADL, and RQP. Iteration counts and runtimes for all instances
are presented. The tolerances are set as ρ̂ = η̂ = 10−5 and a time limit of 3600 seconds, or 1 hour, is imposed.
Entries marked with * did not converge in the time limit.

This § 4.1.1 is unique in that it more closely investigates the behavior of ASL and ASL-2 and the four
bench-marked algorithms on all Sparse PCA instances tested.

Table 4.2 presents the number of outer iterations and the average number of inner iterations per outer
iteration performed by each of the methods for the same Sparse PCA instances considered in Table 4.1. As
demonstrated by the table, both ASL and ASL-2 perform the least number of outer iterations and average
inner iterations among all the methods considered.

To illustrate the robustness of ASL with respect to different choices of input parameters, we compare it
with six different sets of input parameters, of which the first one (namely, ASL-I0) is the one used to generate
the results for ASL and ASL-2 in Table 4.1. The six choices of input parameters are described in Table 4.3
and the corresponding iteration counts and runtimes performed by ASL are given in Table 4.4.

Input Parameter Comparison

Parameters ASL-I0 ASL-I1 ASL-I2 ASL-I3 ASL-I4 ASL-I5

σ 0.1 0.3 0.3 0.4 0.45 0.35
µ 0.25 0.5 0.125 0.167 0.1 0.125
χ 0.001 0.01 0.01 0.0001 0.0001 0.00001
β 1.25 1.5 1.75 2 1.2 2
λ0 20/mf 0.05/mf 2/mf 0.1/mf 0.5/mf 10/mf

Table 4.3 Six different choices of input parameters.

From Table 4.4, we can see that the average CPU time of ASL over the 12 instances were 1.40s, 2.12s,
2.01s, 2.48s, 2.39s, and 1.87s, showing that the performance of ASL is robust under different choices of input
parameters.
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Parameters Iteration Count/Runtime (seconds)

(k, mf , Lf ) ASL-I0 ASL-I1 ASL-I2 ASL-I3 ASL-I4 ASL-I5

(5,125,125) 376/0.86 607/1.61 336/0.80 641/1.56 475/1.07 359/0.81
(10,125,125) 485/1.07 538/1.27 345/0.83 719/1.66 586/1.27 424/0.98
(20,125,125) 489/1.10 509/1.18 380/0.89 589/1.36 485/1.10 485/1.10
(5,200,200) 516/1.15 815/1.83 546/1.22 750/1.76 701/1.55 446/1.03
(10,200,200) 513/1.11 1113/2.40 626/1.41 816/1.88 875/1.89 480/1.07
(20,200,200) 421/0.96 665/1.50 428/1.01 776/1.71 597/1.38 379/0.90
(5,250,250) 523/1.10 737/1.77 591/1.33 886/2.12 823/1.87 570/1.21
(10,250,250) 645/1.38 838/1.89 690/1.57 983/2.15 1016/2.21 646/1.42
(20,250,250) 486/1.08 539/1.28 501/1.17 661/1.61 568/1.29 643/1.45
(5,1000,1000) 918/1.91 1738/3.62 1567/3.25 1790/3.88 1629/3.39 1075/2.27
(10,1000,1000) 759/1.70 2024/4.32 2420/4.97 2184/4.60 2821/5.73 1952/4.12
(20,1000,1000) 1626/3.41 1305/2.82 2790/5.70 2674/5.52 2898/5.94 2936/6.11

Table 4.4 Performance of ASL for solving the Sparse PCA problem of § 4.1.1 for six different choices of input parameters. The
tolerances are set to 10−5.

4.1.2 Nonconvex QSDP

Given a pair of dimensions (ℓ, n) ∈ N2, a scalar pair (τ1, τ2) ∈ ℜ2
++, linear operatorsA : Sn+ 7→ ℜℓ, B : Sn+ 7→ ℜn,

and C : Sn+ 7→ ℜℓ defined by

[A(Z)]i = ⟨Ai, Z⟩ , [B(Z)]j = ⟨Bj , Z⟩ , [C(Z)]i = ⟨Ci, Z⟩ ,

for matrices {Ai}ℓi=1, {Bj}nj=1, {Ci}ℓi=1 ⊆ ℜn×n, positive diagonal matrix D ∈ ℜn×n, and a vector pair (b, d) ∈
ℜℓ×ℜℓ, this § 4.1.2 considers the following nonconvex quadratic semidefinite programming (QSDP) problem:

min
Z

[
f(Z) := −τ1

2 ∥DB(Z)∥2 + τ2

2 ∥C(Z)− d∥2
]

s.t. A(Z) = b, Z ∈ Pn,

where Pn = {Z ∈ Sn+ : trace (Z) = 1}.
For our experiments in § 4.1.2, we choose dimensions (l, n) = (30, 100). The matrices Ai, Bj , and Ci are

generated so that only 5% of their entries are nonzero. The entries of Ai, Bj , Ci, and d (resp. D) are generated
by sampling from the uniform distribution U [0, 1] (resp. U [1, 1000]). We generate the vector b as b = A(E/n),
where E is the diagonal matrix in ℜn×n with all ones on the diagonal. The initial starting point z0 is generated
as a random matrix in S+

n . The specific procedure for generating it is described in [18]. Finally, we choose
(τ1, τ2) ∈ ℜ2

++ so that Lf = λmax(∇2f) and mf = −λmin(∇2f) are the various values given in the tables of
this subsection.

We now describe the specific parameters that ASL, ASL-2, RQP, and iALM choose for this class of problems.
ASL, ASL-2, and RQP choose the initial penalty parameter, c0 = 1. Both ASL and ASL-2 allow the prox
stepsize to be doubled at the end of an iteration if the number of iterations by its ACG call does not exceed
75. ASL and ASL-2 also take M1

0 defined in step 1 of AS-PAL to be 100 and the initial prox stepsize to be
1/(20mf ). Finally, the auxillary parameters of iALM are given by:

Bi = ∥Ai∥F , Li = 0, ρi = 0 ∀i ≥ 1.

The numerical results are presented in two tables, Table 4.5 and Table 4.6. The first table, Table 4.5,
compares ASL and ASL-2 with three of the benchmark algorithms namely, iALM, IPL, and RQP. For ASL-2,
not only are iteration counts and runtimes presented, but also the percentage of its outer iterations where a
full Lagrange multiplier (LM) update is performed is reported. The tolerances are set as ρ̂ = η̂ = 10−5 and a
time limit of 10800 seconds, or 3 hours, is imposed. Table 4.6 presents the same exact instances as Table 4.5
but now with tolerances set as ρ̂ = η̂ = 10−6 and a time limit of 14400 seconds, or 4 hours. Entries marked
with * did not converge in the time limit. Table 4.6 only compares ASL and ASL-2 with iALM and RQP since
these were the only algorithms to converge for every instance with tolerances set at 10−5.

As seen from Table 4.5 and Table 4.6, ASL was the best performing method converging the fastest in
85% and 90% of the instances tested for tolerances 10−5 and 10−6, respectively. On average, ASL also took
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Parameters Iteration Count/Runtime (seconds) LM Update %

mf Lf iALM IPL RQP ASL ASL-2 ASL-2

100 101 230272/1772.75 27345/322.82 9887/91.62 9647/85.38 9647/92.05 100%
100 102 91421/516.42 4575/53.13 7085/73.65 1498/13.28 1498/13.55 100%
100 103 113405/587.24 1403/19.54 9486/112.42 960/8.32 937/8.29 58.33%
100 104 393953/1794.35 3140/31.54 10019/91.49 1824/15.98 2217/18.89 55%
100 105 1938432/9473.18 16282/166.02 15719/145.12 9883/85.50 12064/103.56 55.56%
101 102 347506/1556.07 */* 15971/140.53 4417/38.31 20692/176.30 14.29%
101 103 177264/750.97 */* 10945/96.93 2151/18.98 1807/16.10 55.56%
101 104 129617/2008.28 1296/15.58 9838/93.88 1273/11.14 2403/20.42 55.56%
101 105 287924/1305.24 3410/35.51 8040/75.28 2262/19.91 2479/21.58 53.84%
101 106 1473676/7865.52 15855/164.07 12696/120.96 10305/92.97 11204/95.53 53.13%
102 104 182388/844.88 */* 10803/99.14 1261/11.55 1644/13.94 60%
102 106 450561/2612.55 4503/59.18 10804/128.30 2990/25.63 3088/27.20 54.55%
102 107 1034041/4612.17 20235/207.29 14622/137.38 11893/104.67 12982/109.49 52.63%
103 104 552738/2435.47 */* 18530/172.45 1368/12.42 1827/15.44 55%
103 105 220303/937.05 */* 14929/138.71 3543/31.34 4144/36.30 65.71%
103 107 371617/1791.77 5969/56.92 11230/96.31 5121/44.50 5260/44.59 64.81%
103 108 1634409/7250.46 23075/245.84 13465/133.86 17371/149.43 18878/200.56 61.40%
104 105 450523/1908.97 54984/529.99 18981/168.37 4756/42.61 5408/48.00 74.47%
104 106 248709/1055.40 */* 15876/143.12 6293/54.94 6974/58.95 76.19%
104 108 491118/2230.07 7959/83.00 13184/125.98 7187/63.00 7669/65.02 71.23%

Table 4.5 Iteration counts and runtimes (in seconds) for the Nonconvex QSDP problem in § 4.1.2. For ASL-2, the percentage
of its outer iterations where a full Lagrange multiplier (LM) update is performed is also reported. The tolerances are set to 10−5.
Entries marked with * did not converge in the time limit of 10800 seconds. The ATR metric is 0.3831.

Parameters Iteration Count/Runtime (Seconds) LM Update %

mf Lf iALM RQP ASL ASL-2 ASL-2

100 101 555086/2257.85 35311/333.79 15699/138.34 15699/141.45 100%
100 102 268608/1091.32 27247/237.73 2130/18.24 2130/19.00 100%
100 103 355922/1497.22 26981/243.00 2073/17.59 1937/16.70 58.82%
100 104 1317510/5523.22 60908/563.85 2453/21.21 3099/27.25 51.17%
100 105 */* 70646/699.03 10479/91.90 12895/119.70 53.57%
101 102 1297322/5529.71 68257/676.14 7114/61.71 34580/324.34 13.74%
101 103 526262/2254.62 41340/381.30 24596/212.61 22721/201.09 52.78%
101 104 370204/1565.84 35879/322.52 2098/18.06 2793/23.64 55%
101 105 998029/4212.47 42708/387.52 3848/32.55 4507/38.33 52.94%
101 106 */* 36575/325.00 10710/90.22 12351/105.07 52.94%
102 104 689898/2954.75 39912/377.93 1847/15.83 2187/18.54 56.52%
102 106 1345701/5725.54 49506/448.12 3658/31.57 4143/35.74 53.85%
102 107 */* 43571/399.37 12300/111.21 14147/119.15 52.50%
103 104 1714445/7243.63 64949/594.67 1611/13.94 2514/22.43 54.55%
103 105 596094/2740.11 40706/363.31 3769/32.95 4789/40.52 64.86%
103 107 1625487/6691.03 57454/511.35 7867/68.70 26978/229.32 61.33%
103 108 */* 45759/399.79 18245/163.00 19577/168.74 62.07%
104 105 1376159/6145.45 */* 5030/43.15 6207/54.05 73.47%
104 106 995529/4392.18 51540/489.43 6552/56.81 7333/62.09 75%
104 108 1309587/5634.84 72323/659.91 8096/71.30 8939/78.08 69.23%

Table 4.6 Iteration counts and runtimes (in seconds) for the Nonconvex QSDP problem in § 4.1.2. For ASL-2, the percentage
of its outer iterations where a full Lagrange multiplier (LM) update is performed is also reported. The tolerances are set to 10−6.
Entries marked with * did not converge in the time limit of 14400 seconds. The ATR metric is 0.1616.

only roughly 0.3831 and 0.1616 amount of time that RQP took to converge for tolerances 10−5 and 10−6,
respectively. ASL-2 was the second best-performing method converging the fastest in 20% of instances tested.
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4.1.3 Bounded Matrix Completion (BMC)

This § 4.1.3 considers the bounded matrix completion problem studied in [36]. That is, given a dimension pair
(p, q) ∈ N2, positive scalar triple (υ, τm, θ) ∈ ℜ3

++, scalar pair (u, l) ∈ ℜ2, matrix Q ∈ ℜp×q, and indices Ω,
consider the following bounded matrix completion (BMC) problem:

min
X

1
2∥PΩ(X −Q)∥2 + τm

min{p,q}∑
i=1

[κ(σi(X))− κ0σi(X)] + τmκ0∥X∥∗

s.t. l ≤ Xij ≤ u ∀(i, j) ∈ {1, ..., p} × {1, ..., q},

where ∥ · ∥∗ denotes the nuclear norm, the function PΩ is the linear operator that zeros out any entry not in
Ω, the function σi(X) denotes the ith largest singular value of X, and

κ0 := υ

θ
, κ(t) := υ log

(
1 + |t|

θ

)
∀t ∈ ℜ.

Parameters Iteration Count Runtime (seconds)

θ τm mf Lf RQP ASL ASL-2 RQP ASL ASL-2

1/2 0.5 2 2 130 79 1904 209.07 139.52 3166.11
1/2 1 4 4 128 119 1821 207.21 189.75 3041.02
1/2 2 8 8 1233 457 1734 2075.16 931.91 2452.90
1/3 0.5 4.5 4.5 384 51 1984 1229.60 61.22 2445.73
1/3 1 9 9 513 76 1913 1360.69 101.04 2400.80
1/3 2 18 18 * 494 1858 * 1001.82 2264.55
1/4 0.5 8 8 601 66 1734 928.01 85.28 2180.79
1/4 1 16 16 680 90 1698 1077.89 147.76 2247.67
1/5 0.5 12.5 12.5 488 193 454 1653.75 313.51 622.90
1/5 1 25 25 859 227 418 1494.94 475.09 567.75
1/6 0.5 18 18 838 96 1858 1359.45 137.72 2472.10
1/6 1 36 36 617 221 1815 962.52 358.25 2610.81
1/7 0.5 24.5 24.5 770 142 397 1232.90 195.66 560.27
1/7 1 49 49 789 355 365 1213.75 462.08 483.12

Table 4.7 Iteration counts and runtimes (in seconds) for the BMC problem in § 4.1.3. The tolerances are set to 10−3. Entries
marked with * did not converge in the time limit of 7200 seconds. The ATR metric is 0.3004.

We first describe the parameters considered for the above problem and some of its properties. First, the
matrix Q is the user-movie ratings data matrix of the MovieLens 100K dataset5. Second, υ is chosen to be 0.5
and τm and θ are allowed to vary. Third, the curvature parameters are mf = 2υτm/θ2 and Lf = max {1,mf}.
Fourth, the bounds are set to (l, u) = (0, 5) and the initial starting point is chosen as X0 = 0. Finally, the
above optimization problem can be written in the form:

min
X

f(X) + h(X)

s.t. A(X) ∈ S,

where

f(X) = 1
2∥PΩ(X −Q)∥2 + τm

min{p,q}∑
i=1

[κ(σi(X))− κ0σi(X)] , h(X) = τmκ0∥X∥∗,

A(X) = X, S =
{
Z ∈ ℜp×q : l ≤ Zij ≤ u, (i, j) ∈ {1, ..., p} × {1, ..., q}

}
.

5 See the MovieLens 100K dataset containing 610 users and 9724 movies which can be found in https://grouplens.org/
datasets/movielens/.

https://grouplens.org/datasets/movielens/
https://grouplens.org/datasets/movielens/
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To deal with the more generalized constraints A(X) ∈ S, both ASL and ASL-2 consider the following
augmented Lagrangian function and Lagrange multiplier update:

Lc(z, p) := f(z) + h(z)− ∥p∥
2

2c + c

2

∥∥∥(Az + p

c

)
−ΠS

(
Az + p

c

)∥∥∥2
;

pk := pk−1 + ck

[
Azk −ΠS

(
Azk + pk−1

ck

)]
,

where ΠS denotes the projection onto the set S.
We now describe the specific parameters that ASL, ASL-2, and RQP choose for this class of problems.

ASL, ASL-2, and RQP choose the initial penalty parameter, c0 = 500. Both ASL and ASL-2 allow the prox
stepsize to be doubled at the end of an iteration if the number of iterations by its ACG call does not exceed
4. Finally, ASL and ASL-2 also take M1

0 defined in step 1 of AS-PAL to be 1 and the initial prox stepsize to
be 10/(mf ).

The numerical results are presented in Table 4.7. Table 4.7 compares ASL and ASL-2 with RQP. The
tolerances are set as ρ̂ = η̂ = 10−3 and a time limit of 7200 seconds, or 2 hours, is imposed. Entries marked
with * did not converge in the time limit.

As seen from Table 4.7, ASL was the best performing method converging the fastest in 100% of the instances
tested. On average, ASL also only took roughly 0.3004 amount of time that RQP took to converge.

4.2 Linearly-Constrained SNCO Vector Problems

This subsection compares ASL and ASL-2 against iALM, IPL, RQP, SPA1, and SPA2, on two different
linearly-constrained SNCO vector problems.

4.2.1 Nonconvex QP

Given a pair of dimensions (ℓ, n) ∈ N2, a scalar pair (τ1, τ2) ∈ ℜ2
++, matrices A,C ∈ ℜℓ×n and B ∈ ℜn×n,

positive diagonal matrix D ∈ ℜn×n, and a vector pair (b, d) ∈ ℜℓ ×ℜℓ, this § 4.2.1 considers the problem

min
z

[
f(z) := −τ1

2 ∥DBz∥
2 + τ2

2 ∥Cz − d∥
2
]

s.t. Az = b, z ∈ ∆n,

where ∆n := {x ∈ ℜn+ :
∑n
i=1 xi = 1}. For our experiments in § 4.2.1, we choose dimensions (l, n) = (20, 1000)

and generate the matrices A, B, and C to be fully dense. The entries of A, B, C, and d (resp. D) are generated
by sampling from the uniform distribution U [0, 1] (resp. U [1, 1000]). We generate the vector b as b = A(e/n)
where e denotes the vector of all ones. The initial starting point z0 is generated as z∗/

∑n
i=1 z

∗
i , where the entries

of z∗ are sampled from the U [0, 1] distribution. Finally, we choose (τ1, τ2) ∈ ℜ2
++ so that Lf = λmax(∇2f) and

mf = −λmin(∇2f) are the various values given in the tables of this subsection.
We now describe the specific parameters that ASL, ASL-2, RQP, and iALM choose for this class of problems.

ASL, ASL-2, and RQP choose the initial penalty parameter, c0 = 1. Both ASL and ASL-2 allow the prox
stepsize to be doubled at the end of an iteration if the number of iterations by its ACG call does not exceed
75. ASL and ASL-2 also take M1

0 defined in step 1 of AS-PAL to be 100 and the initial prox stepsize to be
20/mf . Finally, the auxillary parameters of iALM are given by:

Bi = ∥ai∥, Li = 0, ρi = 0 ∀i ≥ 1,

where ai is the ith row of A.
The numerical results are presented in two tables, Table 4.8 and Table 4.9. The first table, Table 4.8,

compares ASL and ASL-2 with five of the benchmark algorithms namely, iALM, IPL, RQP, SPA1, and SPA2.
The tolerances are set as ρ̂ = η̂ = 10−4 and a time limit of 10800 seconds, or 3 hours, is imposed. Table 4.9
presents the same exact instances as Table 4.8 but now with tolerances set as ρ̂ = η̂ = 10−6 and a time limit
of 21600 seconds, or 6 hours. Table 4.9 only compares ASL and ASL-2 with iALM and RQP since these were
the only algorithms to converge for every instance with tolerances set at 10−4. Entries marked with * did not
converge in the time limit.
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Parameters Iteration Count/Runtime (seconds)

(mf ,Lf ) iALM IPL RQP ASL ASL-2 SPA1 SPA2

(100,101) 176005/4410.98 11202/373.54 3905/111.11 4762/152.64 4762/146.47 */* */*

(100,102) 109988/1878.44 5382/155.70 6065/198.38 1884/64.50 1884/73.04 */* */*

(100,103) 57869/1607.23 1210/55.25 11216/384.88 645/18.75 655/18.95 */* */*

(101,101) 236655/4785.86 3958/144.45 3171/88.10 1236/39.36 1236/47.19 */* */*

(101,102) 195714/3582.34 2319/84.14 6701/217.43 1051/34.07 1051/37.53 */* */*

(101,103) 98865/2073.41 1171/41.98 7583/234.67 644/18.16 608/17.58 */* */*

(101,104) 87595/3272.03 6506/280.97 15637/403.79 924/26.29 1000/29.04 */* */*

(102,103) 366178/6637.79 */* 7647/207.66 778/23.34 908/25.60 92872/3290.91 */*

(102,104) 248673/4329.35 */* 10421/283.96 1375/43.01 2145/68.75 120882/5363.80 257973/10644.96

(102,105) 130351/2310.50 19887/561.16 16250/447.53 2410/72.80 2398/72.63 205483/9317.19 213369/7548.79

(103,103) 363915/8111.85 */* 4589/136.56 2001/63.97 1997/59.91 */* */*

(103,104) 344723/6949.95 */* 6023/596.66 4055/147.54 2827/88.94 */* 158622/6136.37

(103,105) 291006/5714.73 16455/495.64 10067/279.27 3007/110.53 3157/122.54 */* 286333/10761.87

(103,106) 141115/2527.15 21586/610.60 15991/423.22 2208/86.19 2921/104.64 269687/9718.92 175752/6267.26

Table 4.8 Iteration counts and runtimes (in seconds) for the Nonconvex QP problem in § 4.2.1. The tolerances are set to 10−4.
Entries marked with * did not converge in the time limit of 10800 seconds. The ATR metric is 0.3025.

Parameters Iteration Count/Runtime (seconds)

(mf ,Lf ) iALM RQP ASL ASL-2

(100,101) 591803/9779.56 23935/599.52 8276/323.31 8276/360.02
(100,102) 698270/11336.43 62409/1579.43 2474/87.09 2474/100.31
(100,103) 551623/9146.99 84314/2232.40 959/27.51 1128/31.49
(101,101) */* 25312/703.17 1628/63.51 1628/62.29
(101,102) */* 53161/3386.99 1793/54.43 1793/58.80
(101,103) */* 54172/1438.63 927/26.36 1474/46.06
(101,104) */* 108376/3482.75 1477/46.23 1614/53.75
(102,103) */* 92292/2475.48 1251/40.43 1269/44.66
(102,104) */* 78775/2116.42 1992/67.83 2934/96.44
(102,105) */* 137886/3875.34 3940/134.06 4725/165.68
(103,103) */* 47491/1280.58 2238/73.86 2805/92.48
(103,104) */* 49708/596.66 6035/222.00 4698/190.47
(103,105) */* 52883/1481.81 3863/161.51 6110/216.05
(103,106) */* 108743/4083.58 3396/139.33 5083/158.99

Table 4.9 Iteration counts and runtimes (in seconds) for the Nonconvex QP problem in § 4.2.1. The tolerances are set to 10−6.
Entries marked with * did not converge in the time limit of 21600 seconds. The ATR metric is 0.1000.

As seen from Table 4.8 and Table 4.9, ASL was the best performing method converging the fastest in
64.3% and 92.9% of the instances tested for tolerances 10−4 and 10−6, respectively. ASL-2 was the second-
best performing method converging the fastest in 50% and 35.7% of the instances tested for tolerances 10−4

and 10−6, respectively.

4.2.2 Nonconvex QP with Box Constraints

Given a pair of dimensions (ℓ, n) ∈ N2, a scalar triple (r, τ1, τ2) ∈ ℜ3
++, matrices A,C ∈ ℜℓ×n and B ∈ ℜn×n,

positive diagonal matrix D ∈ ℜn×n, and a vector pair (b, d) ∈ ℜℓ ×ℜℓ, this § 4.2.2 considers the problem

min
z

[
f(z) := −τ1

2 ∥DBz∥
2 + τ2

2 ∥Cz − d∥
2
]

s.t. Az = b,

− r ≤ zi ≤ r, i ∈ {1, ..., n}.
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Parameters Iteration Count/Runtime (seconds)

(r,mf ,Lf ) iALM IPL RQP ASL ASL-2 SPA1 SPA2

(5, 100, 101) 203310/226.93 11274/17.93 49512/92.43 7247/1.69 9308/2.21 205576/335.91 1943184/2879.25

(10, 100, 101) 221433/334.57 9170/14.29 70736/132.59 7043/1.67 7178/1.80 128567/240.07 1176352/2139.45

(20, 100, 101) 192970/307.75 8363/14.59 58980/144.06 5469/1.30 5546/1.31 154035/374.16 1403641/2295.86

(1, 101, 102) 465159/858.38 */* 326336/1156.69 4509/1.08 5455/1.32 133522/213.68 303003/524.57

(2, 101, 102) 862136/1141.23 */* 399982/814.19 8453/2.01 10058/2.38 64280/107.55 447451/693.07

(5, 101, 102) 1857919/2476.33 */* 174005/394.47 8320/2.06 11574/2.69 106715/238.12 488965/879.75

(1, 101, 103) 351468/510.03 */* 47007/81.74 8438/1.98 9277/2.25 47583/65.33 123195/166.48

(2, 101, 103) 368578/481.14 */* 69875/129.77 6200/1.49 7621/1.77 96971/123.39 161433/198.84

(5, 101, 103) 280346/329.16 */* 116988/232.13 5218/1.23 6980/1.64 272448/361.41 161327/216.67

(1, 102, 103) 727587/908.05 */* 104411/205.03 4200/1.04 4726/1.15 */* 112604/154.60

(2, 102, 103) 964734/1225.22 21472/44.19 130903/253.02 6432/1.56 8113/1.99 */* 53266/74.85

(5, 102, 103) 705884/890.93 11709/25.93 117945/226.21 5137/1.26 6124/1.45 */* 47237/65.84

(1, 102, 104) 576627/864.79 255622/575.34 100193/200.17 7796/1.85 9085/2.16 155586/232.28 183307/274.50

(2, 102, 104) 1028921/1477.99 29123/57.82 165257/314.62 7048/1.68 15508/3.57 158192/256.01 196930/308.35

(5, 103, 103) */* 142961/253.35 225865/439.62 26333/5.92 45890/10.22 */* */*

(10, 103, 103) 2474551/3522.28 */* 168397/330.62 14213/3.27 80951/18.00 */* */*

(1, 103, 104) 435881/667.19 71369/154.75 */* 4724/1.16 4633/1.03 */* */*

(2, 103, 104) 476462/584.73 23931/39.52 64649/100.27 8971/2.12 11009/2.59 */* */*

(5, 103, 104) 521072/649.28 9829/17.02 */* 5943/1.45 21743/5.01 */* */*

(1, 103, 105) */* 347105/696.61 */* 8952/2.12 31893/7.14 */* 142702/231.41

(2, 103, 105) 1436029/2222.25 */* */* 9013/2.13 11148/2.58 */* 163317/397.06

(5, 103, 105) */* 106935/276.73 */* 11629/2.73 12851/2.96 */* 145047/192.72

Table 4.10 Iteration counts and runtimes (in seconds) for the Nonconvex QP problem with box constraints in § 4.2.2. The
tolerances are set to 10−5. Entries marked with * did not converge in the time limit of 3600 seconds. The ATR metric is 0.0097.

For our experiments in § 4.2.2, we choose dimensions (l, n) = (20, 100) and generate the matrices A, B,
and C to be fully dense. The entries of A, B, C, and d (resp. D) are generated by sampling from the uniform
distribution U [0, 1] (resp. U [1, 1000]). We generate the vector b as b = A(u) where u is a random vector in
U [−r, r]n. The initial starting point z0 is generated as a random vector in U [−r, r]n. We vary r across the
different instances. Finally, we choose (τ1, τ2) ∈ ℜ2

++ so that Lf = λmax(∇2f) and mf = −λmin(∇2f) are the
various values given in the tables of this subsection.

We now describe the specific parameters that ASL, ASL-2, and RQP choose for this class of problems.
ASL, ASL-2, and RQP choose the initial penalty parameter, c0 = 1. Both ASL and ASL-2 allow the prox
stepsize to be doubled at the end of an iteration if the number of iterations by its ACG call does not exceed
75. Finally, ASL and ASL-2 also take M1

0 defined in step 1 of AS-PAL to be 100 and the initial prox stepsize
to be 20/mf .

The numerical results are presented in Table 4.10. Table 4.10 compares ASL and ASL-2 with five of the
benchmark algorithms namely, iALM, IPL, RQP, SPA1, and SPA2. The tolerances are set as ρ̂ = η̂ = 10−5

and a time limit of 3600 seconds, or 1 hour, is imposed. Entries marked with * did not converge in the time
limit.

As seen from Table 4.10, ASL was the best performing method converging the fastest in 95.5% of the
instances tested. On average, ASL also only took roughly 0.0097 amount of time that RQP took to converge.

4.3 Comments about the numerical results

Overall, the adaptive methods ASL, ASL-2, and RQP were the most reliable and consistent, converging in
almost every instance. ASL was clearly the most efficient, often converging much faster than RQP particularly
when the required accuracy was high. As demonstrated by the results in Tables 4.5 and 4.6 and the ones
in Tables 4.8 and 4.9, the ATR metric improves (decreases) as the required accuracy increases. Finally, ASL
worked extremely fast on the problem classes of § 4.1.1 and § 4.2.2 as demonstrated by the results in Tables
4.1 and 4.10, respectively.
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A ADAP-FISTA algorithm

A.1 ADAP-FISTA method

This subsection presents an adaptive ACG variant, called ADAP-FISTA, which is an important tool in the
development of the AS-PAL method. We first introduce the assumptions on the problem it solves. ADAP-
FISTA considers the following problem

min{ψ(x) := ψs(x) + ψn(x) : x ∈ ℜn} (A.1)

where ψs and ψn are assumed to satisfy the following assumptions:

(I) ψn : ℜn → ℜ∪ {+∞} is a possibly nonsmooth convex function;
(II) ψs : ℜn → ℜ is a differentiable function and there exists L̄ ≥ 0 such that

∥∇ψs(z′)−∇ψs(z)∥ ≤ L̄∥z′ − z∥ ∀z, z′ ∈ ℜn. (A.2)

We now describe the type of approximate solution that ADAP-FISTA aims to find.

Problem A: Given ψ satisfying the above assumptions, a point x0 ∈ domψn, a parameter σ ∈ (0,∞), the
problem is to find a pair (y, u) ∈ domψn ×ℜn such that

∥u∥ ≤ σ∥y − x0∥, u ∈ ∇ψs(y) + ∂ψn(y). (A.3)

We are now ready to present the ADAP-FISTA algorithm below.

ADAP-FISTA Method

0. Let initial point x0 ∈ domψn and scalars µ > 0, L0 > µ, χ ∈ (0, 1), β > 1, and σ > 0 be given, and set
y0 = x0, A0 = 0, τ0 = 1, and j = 0;

1. Set Lj+1 = Lj ;
2. Compute

aj =
τj +

√
τ2
j + 4τjAj(Lj+1 − µ)

2(Lj+1 − µ) , x̃j = Ajyj + ajxj
Aj + aj

, (A.4)

yj+1 := arg min
u∈domψn

{
qj(u; x̃j , Lj+1) := ℓψs(u; x̃j) + ψn(u) + Lj+1

2 ∥u− x̃j∥2
}
, (A.5)

If the inequality
ℓψs(yj+1; x̃j) + (1− χ)Lj+1

4 ∥yj+1 − x̃j∥2 ≥ ψs(yj+1) (A.6)

holds go to step 3; else set Lj+1 ← βLj+1 and repeat step 2;
3. Compute

Aj+1 = Aj + aj , τj+1 = τj + ajµ, (A.7)
sj+1 = (Lj+1 − µ)(x̃j − yj+1), (A.8)

xj+1 = 1
τj+1

[µajyj+1 + τjxj − ajsj+1] ; (A.9)

6 See https://github.com/asujanani6/AS-PAL.

https://github.com/asujanani6/AS-PAL
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4. If the inequality

∥yj+1 − x0∥2 ≥ χAj+1Lj+1∥yj+1 − x̃j∥2, (A.10)

holds, then go to step 5; otherwise, stop with failure;
5. Compute

uj+1 = ∇ψs(yj+1)−∇ψs(x̃j) + Lj+1(x̃j − yj+1). (A.11)

If the inequality
∥uj+1∥ ≤ σ∥yj+1 − x0∥ (A.12)

holds then stop with success and output (y, u, L) := (yj+1, uj+1, Lj+1); otherwise, j ← j + 1 and go to
step 1.

We now make some remarks about ADAP-FISTA. First, usual FISTA methods for solving the strongly
convex version of (A.1) consist of repeatedly invoking only steps 2 and 3 of ADAP-FISTA either with a static
Lipschitz constant (of the gradient), namely, Lj+1 = L for all j ≥ 0 for some L ≥ L̄, or by adaptively searching
for a suitable Lipschitz Lj+1 (as in step 2 of ADAP-FISTA) satisfying a condition similar to (A.6). Second,
the pair (yj+1, uj+1) always satisfies the inclusion in (A.3) (see Lemma A.3 below) so if ADAP-FISTA stops
successfully in step 5, or equivalently (A.12) holds, the pair solves Problem A above. Finally, if condition
(A.10) in step 4 is never violated, ADAP-FISTA must stop successfully in step 5 (see Proposition A.1 below).

We now discuss how ADAP-FISTA compares with existing ACG variants for solving (A.1) under the
assumption that ψs is µ-strongly convex. Under this assumption, FISTA variants have been studied, for
example, in [3, 11, 12, 28, 30], while other ACG variants have been studied, for example, in [7, 8, 31]. A crucial
difference between ADAP-FISTA and these variants is that: i) ADAP-FISTA stops based on a different relative
criterion, namely, (A.12) (see Problem A above) and attempts to approximately solve (A.1) in this sense
even when ψs is not µ-strongly convex, and ii) ADAP-FISTA provides a key and easy to check inequality
whose validity at every iteration guarantees its successful termination. On the other hand, ADAP-FISTA
shares similar features with these other methods in that: i) it has a reasonable iteration complexity guarantee
regardless of whether it succeeds or fails, and ii) it successfully terminates when ψs is µ-strongly convex (see
Propositions A.1-A.2 below). Moreover, like the method in [3], ADAP-FISTA adaptively searches for a suitable
Lipschitz estimate Lj+1 that is used in (A.5).

We now present the main convergence results of ADAP-FISTA, which is invoked by AS-PAL for solving
the sequence of subproblems (1.4). The first result, namely Proposition A.1 below, gives an iteration com-
plexity bound regardless if ADAP-FISTA terminates with success or failure and shows that if ADAP-FISTA
successfully stops, then it obtains a stationary solution of (A.1) with respect to a relative error criterion. The
second result, namely Proposition A.2 below, shows that ADAP-FISTA always stops successfully whenever ψs
is µ-strongly convex.

Proposition A.1 The following statements about ADAP-FISTA hold:

(a) if L0 = O(L̄), it always stops (with either success or failure) in at most

O1

√ L̄

µ
log+

1 (L̄)


iterations/resolvent evaluations;

(b) if it stops successfully, it terminates with a triple (y, u, L) ∈ domψn ×ℜn satisfying

u ∈ ∇ψs(y) + ∂ψn(y), ∥u∥ ≤ σ∥y − x0∥, L ≤ max{L0, ωL̄}. (A.13)

Proposition A.2 If ψs is µ-convex, then ADAP-FISTA always terminates with success and its output (y, u, L),
in addition to satisfying (A.13) also satisfies the inclusion u ∈ ∂(ψs + ψn)(y).

The rest of this section is broken up into two subsections which are dedicated to proving Proposition A.1 and
Proposition A.2, respectively.
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A.2 Proof of Proposition A.1

This subsection is dedicated to proving Proposition A.1. The first lemma below presents key definitions and
inequalities used in the convergence analysis of ADAP-FISTA.

Lemma A.3 Define
ω = 2β/(1− χ), ζ := L̄+ max{L0, ωL̄}. (A.14)

Then, the following statements hold:

(a) {Lj} is nondecreasing;
(b) for every j ≥ 0, we have

τj = 1 +Ajµ,
τjAj+1

a2
j

= Lj+1 − µ; (A.15)

L0 ≤ Lj ≤ max{L0, ωL̄}; (A.16)

uj+1 ∈ ∇ψs(yj+1) + ∂ψn(yj+1), ∥uj+1∥ ≤ ζ∥yj+1 − x̃j∥. (A.17)

Proof (a) It is clear from the update rule in the beginning of Step 1 that {Lj} is nondecreasing.
(b) The first equality in (A.15) follows directly from both of the relations in (A.7). The second equality in

(A.15) follows immediately from the definition of aj in (A.4) and the first relation in (A.7).
We prove (A.16) by induction. It clearly holds for j = 0. Suppose now (A.16) holds for j ≥ 0 and let us

show that it holds for j + 1. Note that if Lj+1 = Lj , then relation (A.16) immediately holds. Assume then
that Lj+1 > Lj . It then follows from the way Lj+1 is chosen in step 1 that (A.6) is not satisfied with Lj+1/β.
This fact together with the inequality (A.2) at the points (yj+1, x̃j) imply that

ℓψs
(yj+1; x̃j) + (1− χ)Lj+1

4β ∥yj+1 − x̃j∥2 < ψs(yj+1)
(A.2)
≤ ℓψs

(yj+1; x̃j) + L̄

2 ∥yj+1 − x̃j∥2. (A.18)

The relation in (A.16) then immediately follows from the definition of ω in (A.14).
Now, by the definition of uj+1 in (A.11), triangle inequality, (A.2), the bound (A.16) on Lj+1, and the

definition of ζ we have

∥uj+1∥
∥yj+1 − x̃j∥

(A.11)
≤ ∥∇ψs(yj+1)−∇ψs(x̃j)∥

∥yj+1 − x̃j∥
+ Lj+1

(A.2)
≤ L̄+ Lj+1

(A.16)
≤ ζ

which immediately implies the inequality in (A.17). It follows from (A.5) and its associated optimality condition
that 0 ∈ ∇ψs(x̃j) + ∂ψn(yj+1)−Lj+1(x̃j − yj+1), which in view of the definition of uj+1 in (A.11) implies the
inclusion in (A.17).

The result below gives some estimates on the sequence {Aj}, which will be important for the convergence
analysis of the method.

Lemma A.4 Define

Q := 2

√
max{L0, ωL̄}

µ
(A.19)

where ω is as in (A.14). Then, for every j ≥ 1, we have

AjLj ≥ max
{
j2

4 ,
(
1 +Q−1)2(j−1)

}
. (A.20)

Proof Let integer j ≥ 1 be given. Define ξj = 1/(Lj − µ). Using the first equality in (A.7) and the definition
of aj in (A.4), we have that for every i ≤ j,

Ai
(A.7)= Ai−1 + ai−1

(A.4)
≥ Ai−1 +

(
τi−1ξi

2 +
√
τi−1ξiAi−1

)
≥
(√

Ai−1 + 1
2
√
τi−1ξi

)2
.

Passing the above inequality to its square root and using Lemma A.3(a) and the fact that (A.15) implies that
τi−1 ≥ max{1, µAi−1}, we then conclude that for every i ≤ j,
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√
Ai −

√
Ai−1 ≥

1
2
√
ξi ≥

1
2
√
ξj (A.21)√

Ai
Ai−1

≥ 1 + 1
2
√
µξi ≥ 1 + 1

2
√
µξj ≥ 1 +Q−1 (A.22)

where the last inequality in (A.22) follows from the definition of ξj , the relation in (A.16), and the definition of
Q in (A.19). Adding the inequality in (A.21) from i = 1 to i = j and using the fact that A0 = 0, we conclude
that

√
Aj ≥ j

√
ξj/2 and hence that the first bound in (A.20) holds in view of the fact that ξj ≥ 1/Lj . Now,

multiplying the inequality in (A.22) from i = 2 to i = j and using Lemma A.3(a) and the fact that A1 = ξ1,
we conclude that

√
Aj ≥

√
ξ1(1 + Q−1)j−1 ≥

√
ξj(1 + Q−1)j−1, and hence that the second bound in (A.20)

holds in view of the fact that ξj ≥ 1/Lj .

Proposition A.5 Let ζ and Q be as in (A.14) and (A.19), respectively. ADAP-FISTA always stops (with
either success or failure) and does so by performing at most⌈

(1 +Q) log+
1

(
ζ2

χσ2

)
+ 1
⌉

+
⌈

2 log+
0 (L̄/((1− χ)L0))

log β

⌉
(A.23)

iterations/resolvent evaluations.

Proof Let l denote the first quantity in (A.23). Using this definition and the inequality log(1 +α) ≥ α/(1 +α)
for any α > −1, it is easy to verify that

(
1 +Q−1)2(l−1) ≥ ζ2

χσ2 . (A.24)

We claim that ADAP-FISTA terminates with success or failure in at most l iterations. Indeed, it suffices to
show that if ADAP-FISTA has not stopped with failure up to (and including) the l-th iteration, then it must
stop successfully at the l-th iteration. So, assume that ADAP-FISTA has not stopped with failure up to the
l-th iteration. In view of step 4 of ADAP-FISTA, it follows that (A.10) holds with j = l − 1.

This observation together with the inequality in (A.17) with j = l− 1, (A.20) with j = l, and (A.24), then
imply that

∥yl − x0∥2
(A.10)
≥ χAlLl∥yl − x̃l−1∥2

(A.17)
≥ χ

ζ2AlLl∥ul∥
2

(A.20)
≥ χ

ζ2

(
1 +Q−1)2(l−1) ∥ul∥2

(A.24)
≥ 1

σ2 ∥ul∥
2, (A.25)

and hence that (A.12) is satisfied. In view of Step 5 of ADAP-FISTA, the method must successfully stop at
the end of the l-th iteration. We have thus shown that the above claim holds. Moreover, in view of (A.16),
it follows that the second term in (A.23) is a bound on the total number of times Lj is multiplied by β and
step 2 is repeated. Since exactly one resolvent evaluation occurs every time step 2 is executed, the desired
conclusion follows.

We are now ready to give the proof of Proposition A.1.

Proof (of Proposition A.1) (a) The result immediately follows from Proposition A.5 and the assumption that
L0 = O(L̄).

(b) This is immediate from the termination criterion (A.12) in step 5 of ADAP-FISTA, the inclusion in
(A.17), and relation (A.16).

A.3 Proof of Proposition A.2

This subsection is dedicated to proving Proposition A.2. Thus, for the remainder of this subsection, assume
that ψs is µ-strongly convex. The first lemma below presents important properties of the iterates generated
by ADAP-FISTA.
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Lemma A.6 For every j ≥ 0 and x ∈ ℜn, define

γj(x) := ℓψs
(yj+1, x̃j) + ψn(yj+1) + ⟨sj+1, x− yj+1⟩+ µ

2 ∥yj+1 − x̃j∥2 + µ

2 ∥x− yj+1∥2, (A.26)

where ψ := ψs + ψn and sj+1 are as in (A.1) and (A.8), respectively. Then, for every j ≥ 0, we have:

yj+1 = arg min
x

{
γj(x) + Lj+1 − µ

2 ∥x− x̃j∥2
}

; (A.27)

xj+1 = arg min
x∈ℜn

{
ajγj(x) + τj ∥x− xj∥2

/2
}
. (A.28)

Proof Since ∇γj(yj+1) = sj+1, it follows from (A.8) that yj+1 satisfies the optimality condition for (A.27),
and thus the relation in (A.27) follows. Furthermore, we have that:

aj∇γj(xj+1) + τj(xj+1 − xj) = ajsj+1 + ajµ(xj+1 − yj+1) + τj(xj+1 − xj)
(A.7)= ajsj+1 − µajyj+1 − τjxj + τj+1xj+1

(A.9)= 0

and thus (A.28) follows.
Before stating the next lemma, recall that if a closed function Ψ : ℜn → ℜ ∪ {+∞} is ν-convex with

modulus ν > 0, then it has an unique global minimum z∗ and

Ψ(z∗) + ν

2∥ · −z
∗∥2 ≤ Ψ(·). (A.29)

Lemma A.7 For every j ≥ 0 and x ∈ ℜn, we have

Ajγj(yj) + ajγj(x) + τj
2 ∥xj − x∥

2 − τj+1

2 ∥xj+1 − x∥2

≥ Aj+1ψ(yj+1) + χAj+1Lj+1

2 ∥yj+1 − x̃j∥2. (A.30)

Proof Using (A.28), the second identity in (A.7), and the fact that Ψj := ajγj(·) + τj∥ ·−xj∥2/2 is (τj +µaj)-
convex, it follows from (A.29) with Ψ = Ψj and ν = τj+1 that

ajγj(x) + τj
2 ∥x− xj∥

2 − τj+1

2 ∥x− xj+1∥2 ≥ ajγj(xj+1) + τj
2 ∥xj+1 − xj∥2 ∀x ∈ ℜn.

Using the convexity of γj , the definitions of Aj+1 and x̃j in (A.7) and (A.4), respectively, and the second
equality in (A.15), we have

Ajγj(yj) + ajγj(xj+1) + τj
2 ∥xj+1 − xj∥2

≥ Aj+1γj

(
Ajyj + ajxj+1

Aj+1

)
+
τjA

2
j+1

2a2
j

∥∥∥∥Ajyj + ajxj+1

Aj+1
− Ajyj + ajxj

Aj+1

∥∥∥∥2

(A.4)
≥ Aj+1 min

x

[
γj (x) + τjAj+1

2a2
j

∥x− x̃j∥2

]
(A.15)= Aj+1 min

x

{
γj(x) + Lj+1 − µ

2 ∥x− x̃j∥2
}

(A.27)= Aj+1

[
γj(yj+1) + Lj+1 − µ

2 ∥yj+1 − x̃j∥2
]

(A.26)= Aj+1

[
ℓψs(yj+1; x̃j) + ψn(yj+1) + Lj+1

2 ∥yj+1 − x̃j∥2
]

(A.6)
≥ Aj+1

[
ψ(yj+1) + χLj+1

2 ∥yj+1 − x̃j∥2
]
.

The conclusion of the lemma now follows by combining the above two relations.

Lemma A.8 For every j ≥ 0, we have γj ≤ ψ.
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Proof Define:

γ̃j(x) := ℓψs
(x; x̃j) + ψn(x) + µ

2 ∥x− x̃j∥
2. (A.31)

It follows immediately from the fact that ψs is µ-convex that γ̃j ≤ ψ. Furthermore, immediately from the
definition of yj+1 in (A.5), we can write:

yj+1 = arg min
x

{
γ̃j(x) + Lj+1 − µ

2 ∥x− x̃j∥2
}
. (A.32)

Now, clearly from (A.32) and the definition of sj+1 in (A.8), we see that sj+1 ∈ ∂γ̃j(yj+1). Furthermore, since
γ̃j is µ-convex, it follows from the subgradient rule for the sum of convex functions that the above inclusion
is equivalent to sj+1 ∈ ∂

(
γ̃j(·)− µ

2 ∥ · −yj+1∥2) (yj+1). Hence, the subgradient inequality and the fact that
γ̃j(x) ≤ ψ(x) imply that for all x ∈ ℜn:

ψ(x) ≥ γ̃j(x) ≥ γ̃j(yj+1) + ⟨sj+1, x− yj+1⟩+ µ

2 ∥x− yj+1∥2 = γj(x)

and thus the statement of the lemma follows.

Lemma A.9 For every j ≥ 0 and x ∈ domψn, we have

ηj(x)− ηj+1(x) ≥ χAj+1Lj+1

2 ∥yj+1 − x̃j∥2

where
ηj(x) := Aj [ψ(yj)− ψ(x)] + τj

2 ∥x− xj∥
2.

Proof Subtracting Aj+1ψ(x) from both sides of the inequality in (A.30) and using Lemma A.8 we have

Ajψ(yj)+ajψ(x)−Aj+1ψ(x) + τj
2 ∥xj − x∥

2 − τj+1

2 ∥xj+1 − x∥2

≥ Aj+1ψ(yj+1)−Aj+1ψ(x) + χAj+1Lj+1

2 ∥yj+1 − x̃j∥2.

The result now follows from the first equality in (A.7) and the definition of ηj(x).
We now state a result that will be important for deriving complexity bounds for ADAP-FISTA.

Lemma A.10 For every j ≥ 0 and x ∈ domψn, we have

Aj [ψ(yj)− ψ(x)] + τj
2 ∥x− xj∥

2 ≤ 1
2∥x− x0∥2 − χ

2

j−1∑
i=0

Ai+1Li+1∥yi+1 − x̃i∥2. (A.33)

Proof Summing the inequality of Lemma A.9 from j = 0 to j = j− 1, using the facts that A0 = 0 and τ0 = 1,
and using the definition of ηj(·) in Lemma A.9 gives us the inequality of the lemma.

We are now ready to give the proof of Proposition A.2.

Proof (of Proposition A.2) Since ψs is µ-convex, Lemma A.10 holds. Thus, using (A.33) with x = yj , it follows
that for all j ≥ 0:

∥yj − x0∥2
(A.33)
≥ χ

j∑
i=1

AiLi∥yi − x̃i−1∥2 ≥ χAjLj∥yj − x̃j−1∥2. (A.34)

Hence, for all j ≥ 0, relation (A.10) in step 4 of ADAP-FISTA is always satisfied and thus ADAP-FISTA
never fails. In view of this observation and Proposition A.1, it follows that if ψs is µ-convex then ADAP-FISTA
always terminates successfully with a (y, u, L) satisfying relation (A.13) in a finite number of iterations. The
inclusion u ∈ (ψs +ψn)(y) then follows immediately from the inclusion in (A.13) and the subgradient rule for
the sum of convex functions.
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B Technical Results for Proof of Lagrange Multipliers

The following basic result is used in Lemma B.3. Its proof can be found, for instance, in [4, Lemma A.4].
Recall that ν+

A denotes the smallest positive singular value of a nonzero linear operator A .

Lemma B.1 Let A : ℜn → ℜl be a nonzero linear operator. Then,

ν+
A∥u∥ ≤ ∥A

∗u∥, ∀u ∈ A(ℜn).

The following technical result, whose proof can be found in Lemma 3.10 of [16], plays an important role
in the proof of Lemma B.3 below.

Lemma B.2 Let h be a function as in (C1). Then, for every δ ≥ 0, z ∈ H, and ξ ∈ ∂δh(z), we have

∥ξ∥dist(u, ∂H) ≤ [dist(u, ∂H) + ∥z − u∥]Mh + ⟨ξ, z − u⟩+ δ ∀u ∈ H (B.1)

where ∂H denotes the boundary of H.

Lemma B.3 Assume that h is a function as in condition (C1) and A : ℜn → ℜl is a linear operator satisfying
condition (C2). Assume also that the triple (z, q, r) ∈ ℜn ×A(ℜn)×ℜn satisfy r ∈ ∂h(z) +A∗q. Then:

(a) there holds
d̄ν+
A∥q∥ ≤ 2Dh (Mh + ∥r∥)− ⟨q, Az − b⟩; (B.2)

(b) if, in addition,
q = q− + χ(Az − b) (B.3)

for some q− ∈ ℜl and χ > 0, then we have

∥q∥ ≤ max
{
∥q−∥, 2Dh(Mh + ∥r∥)

d̄ν+
A

}
. (B.4)

Proof (a) The assumption on (z, q, r) implies that r−A∗q ∈ ∂h(z). Hence, using the Cauchy-Schwarz inequality,
the definitions of d̄ and z̄ in (2.15) and (C2), respectively, and Lemma B.2 with ξ = r−A∗q, u = z̄, and δ = 0,
we have:

d̄∥r −A∗q∥ −
[
d̄+ ∥z − z̄∥

]
Mh

(B.1)
≤ ⟨r −A∗q, z − z̄⟩ ≤ ∥r∥∥z − z̄∥ − ⟨q, Az − b⟩. (B.5)

Now, using the above inequality, the triangle inequality, the definition of Dh in (C1), and the facts that d̄ ≤ Dh

and ∥z − z̄∥ ≤ Dh, we conclude that:

d̄∥A∗q∥+ ⟨q, Az − b⟩
(B.5)
≤
[
d̄+ ∥z − z̄∥

]
Mh + ∥r∥

(
Dh + d̄

)
≤ 2Dh (Mh + ∥r∥) . (B.6)

Noting the assumption that q ∈ A(ℜn), inequality (B.2) now follows from the above inequality and Lemma B.1.
(b) Relation (B.3) implies that ⟨q, Az − b⟩ = ∥q∥2/χ− ⟨q−, q⟩/χ, and hence that

d̄ν+
A∥q∥+ ∥q∥

2

χ
≤ 2Dh(Mh + ∥r∥) + ⟨q

−, q⟩
χ

≤ 2Dh(Mh + ∥r∥) + ∥q∥
χ
∥q−∥, (B.7)

where the last inequality is due to the Cauchy-Schwarz inequality. Now, letting K denote the right hand side
of (B.4) and using (B.7), we conclude that(

d̄ν+
A + ∥q∥

χ

)
∥q∥

(B.7)
≤
(

2Dh(Mh + ∥r∥)
K

+ ∥q∥
χ

)
K ≤

(
d̄ν+
A + ∥q∥

χ

)
K, (B.8)

and hence that (B.4) holds.
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