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We study the fair and truthful allocation of 𝑚 divisible public items among 𝑛 agents, each with distinct

preferences for the items. To aggregate agents’ preferences fairly, we focus on finding a core solution. For

divisible items, a core solution always exists and can be calculated by maximizing the Nash welfare objective.

However, such a solution is easily manipulated; agents might have incentives to misreport their preferences.

To mitigate this, the current state-of-the-art finds an approximate core solution with high probability while

ensuring approximate truthfulness. However, this approach has two main limitations. First, due to several

approximations, the approximation error in the core could grow with 𝑛, resulting in a non-asymptotic core

solution. This limitation is particularly significant as public-good allocation mechanisms are frequently applied

in scenarios involving a large number of agents, such as the allocation of public tax funds for municipal projects.

Second, implementing the current approach for practical applications proves to be a highly nontrivial task. To

address these limitations, we introduce PPGA, a (differentially) Private Public-Good Allocation algorithm,

and show that it attains asymptotic truthfulness and finds an asymptotic core solution with high probability.

Additionally, to demonstrate the practical applicability of our algorithm, we implement PPGA and empirically

study its properties using municipal participatory budgeting data.

1 INTRODUCTION
Unlike the allocation of private goods, where each item goes to a single agent, public goods allow

multiple agents to benefit from an allocated item. In this paper, we study the problem of fairly

allocating𝑚 divisible public goods among 𝑛 agents in a truthful manner. Different agents hold

distinct preferences for the items. Each item has a size, and the total size of allocated items should not

exceed the available capacity. The fair allocation of divisible public goods is a fundamental problem

in social choice theory with many real-world applications. Examples include: (1) federal/state

budget allocations between services such as healthcare, education, and defense or municipal budget

allocations to improve utilities such as libraries, parks, and roads
1
; (2) shared memory allocations

between files with different sizes; and (3) time allocations between activities during events.

An allocation mechanism produces outcomes based on reported preferences of all agents. Agents

need not reveal their true preferences but strategically report them to maximize their utility. For

instance, consider a setting where there are one or more commonly preferred items. Such items are

highly likely to be allocated regardless of the reported preferences of a single agent. Given this

and assuming that other agents report their preference truthfully, agents could be incentivized to

free-ride by falsely claiming disinterest in commonly preferred items and reporting preferences

only for their individually preferred items. By doing so, free riders increase the chances of their

individually preferred items being allocated under a fair allocation mechanism.

To aggregate agents’ preferences fairly, we focus on the classic game theoretic notion of the

core [13, 25]. The core generalizes well-studied notions of proportionality and Pareto efficiency by

ensuring group-wise fairness, providing fair outcomes to each agent subset relative to its size. The
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notion of the core has been extensively studied in the context of public-good allocation [17, 18,

21, 42, 43]. For allocating divisible public goods, the core always exists, and it can be calculated by

maximizing Nash welfare (NW) objective (i.e., the product of agents’ utilities) [17]. However, the
core is easy to manipulate; agents might be incentivized to free-ride.

To address this issue, Fain et al. [17] propose a method that aims to find an approximate core

solution with high probability while also achieving approximate truthfulness. This method relies

on the exponential mechanism derived from differential privacy [39]. The exponential mechanism

uses a scoring function to assign a score to each outcome. Subsequently, a sample is drawn from a

distribution that exponentially weights outcomes based on their scores. This guarantees that the

selected outcome’s score is approximately maximized with high probability.

Informally, differential privacy ensures that the output of a mechanism does not change signif-

icantly when any agent unilaterally modifies their data. This emphasis on unilateral deviations

aligns closely with truthfulness in mechanism design, where a mechanism is truthful if agents have

no incentive to misreport their types. As a result, differentially private mechanisms can be shown

to be approximately dominant-strategy truthful [39]. For the exponential mechanism, the level of

differential privacy–and consequently, truthfulness–is contingent on the sensitivity
2
of the scoring

function to the reported input of any individual agent. Higher sensitivity corresponds to a lower

quality of the guarantee.

The use of the exponential mechanism for public-good allocation faces two primary challenges.

First, while the NW objective seems to be an ideal choice for the scoring function, its direct use is

hindered by its high sensitivity to each agent’s reported preferences. This limitation arises since

the NW objective is not separable
3
. To address this, Fain et al. [17] propose using a proxy function

to replace the NW objective in the scoring function.

The introduced proxy function strikes a balance between reducing the sensitivity of the scoring

function–thereby improving truthfulness approximation–and retaining sufficient sensitivity to

ensure an acceptable approximation to the core. However, the use of the proxy function, along

with other approximations, introduces an approximation error in satisfying the core conditions.

This approximation error can grow with the number of agents, potentially resulting in a solution

that does not satisfy the asymptotic core. This limitation is particularly significant as public-good

allocation mechanisms are frequently applied in scenarios involving a large number of agents, such

as participatory budgeting elections for distributing municipal budgets.

Secondly, sampling an𝑚-dimensional allocation from a distribution poses a significant practical

challenge. To tackle this, Fain et al. [17] propose employing the hit-and-run method [53] to sample

an allocation from an “approximately right distribution.” However, implementing the hit-and-run

method for practical applications proves to be a highly nontrivial task, as discussed in the conclusion

of Sec. 2.2 by Lovász and Vempala [37]. Moreover, the implications of the extra approximation on

the guarantees of truthfulness and core remain unclear.

1.1 Our Contributions
In Section 3, we introduce PPGA, a novel differentially private algorithm for public-good allocation.

A key feature of PPGA is its approach to maximize the NW objective in a differentially private

way without requiring a proxy objective. As previously discussed, the non-separable nature of the

NW objective poses challenges in deploying differentially private mechanisms [17]. To tackle this

challenge, we employ a key technique called global variable consensus optimization [7]. Consensus

2
Informally, the sensitivity of a function is the maximum change in its output resulting from a change in its input (refer to

Section 2.3 for a formal definition).

3 𝑓 (𝑥 ) is separable with respect to a partition of 𝑥 into 𝑛 sub-vectors 𝑥 = (𝑥1, . . . , 𝑥𝑛 ) if 𝑓 (𝑥 ) =
∑
𝑓𝑖 (𝑥𝑖 ) .



transforms the NW objective into a separable form that splits easily. Leveraging the alternating
direction method of multipliers (ADMM) [24, 26] enables us to maximize the NW objective in a

distributed manner. And this further allows us to employ the Gaussian mechanism [39] from

differential privacy to achieve truthfulness. The application of differentially private ADMM to the

global variable consensus problem for Nash welfare optimization is a novel contribution of this

work.

In Section 4, we analytically study the properties of our proposed algorithm. Our primary

technical contribution lies in showing that, for carefully chosen 𝜖, 𝛿 > 0, PPGA achieves (𝜖, 𝛿)-
truthfulness and returns an (𝜀1, 𝜀2 (1 + 𝜀1))-core outcome with probability at least 1 − 1/𝑛 − 1/𝑛𝑚 ,
where

𝜀1 = O
(√︂

𝑚 log(1/𝛿)
𝑛𝜖2

)
and 𝜀2 = O

(
4

√︂
𝑚 log(1/𝛿)

𝑛𝜖2

)
.

Assuming that𝑚 = 𝑜 (
√
𝑛) and setting 𝜖 = Θ(1/log(𝑛)) and 𝛿 = Θ(1/

√
𝑛), we further demonstrate

that PPGA is asymptotically truthful (Theorem 12) and yields an asymptotic core solution with

high probability (Theorem 17). To our knowledge, PPGA is the first polynomial-time algorithm

(Theorem 19) that offers these guarantees.

In Section 5, we demonstrate that PPGA can be deployed in practice to solve large-scale public-

good allocation problems. To this end, we implement PPGA and utilize our implementation to

compare the outcome of PPGA with a core solution using data obtained from real-world participa-

tory budgeting elections [19].

2 PRELIMINARIES
In this section, we first define the public-good allocation problem and its desired properties. We

then provide an overview of differential privacy as a tool for designing truthful mechanisms. A

summary of our notations is presented in Appendix A

2.1 Problem Formulation
We consider a public-good allocation problem with 𝑛 agents and𝑚 divisible public items (𝑚 ≪ 𝑛).

The size of each item 𝑗 is denoted by 𝑠 𝑗 ∈ R>0, and the size vector is denoted by 𝑠 = (𝑠1, . . . , 𝑠𝑚).
The total available capacity is 𝑐 ∈ R>0. An allocation is a vector 𝑧 = (𝑧1, . . . , 𝑧𝑚) ∈ [0, 1]𝑚 , where
𝑧 𝑗 represents the fraction of the total capacity that is allocated to item 𝑗 . The set of all feasible

allocations is denoted by:

Z ≜ {𝑧 ∈ [0, 1]𝑚 | ∥𝑧∥1 ≤ 1, 𝑐𝑧 ≤ 𝑠}.

Agent 𝑖’s utility function for an allocation 𝑧 ∈ Z is denoted by 𝑈𝑖 (𝑧) and is parameterized by

the utility vector 𝑢𝑖 = (𝑢𝑖1, . . . , 𝑢𝑖𝑑 ), where 𝑑 is a positive integer. For example, for a linear utility

function of the form𝑈𝑖 (𝑧) =
∑𝑚
𝑗=1
𝑢𝑖 𝑗𝑧 𝑗 , we have 𝑑 =𝑚, and each 𝑢𝑖 𝑗 represents the relative value

that agent 𝑖 assigns to the fraction of the budget allocated to item 𝑗 . In this paper, we focus on a

subclass of utility functions defined onZ that are differentiable, strictly increasing, concave, and

𝛽-smooth, i.e., they have 𝛽-Lipschitz continuous gradients:

∥∇𝑈𝑖 (𝑧) − ∇𝑈𝑖 (𝑧′)∥2 ≤ 𝛽 ∥𝑧 − 𝑧′∥2.

This subclass includes the common linear utility functions, which generalize additive utilities

studied by [2, 4–6, 9, 18, 40, 45, 54]. Without loss of generality, we assume that𝑈𝑖 ∈ [0, 1] for all 𝑖 ,
with𝑈𝑖 (0𝑚) = 0 and𝑈𝑖 (𝑧) > 0 for some 𝑧 ∈ Z. We further assume that 𝑢𝑖 ∈ U for every 𝑖 , where

U ≜ [0, 1]𝑑 .



2.2 Mechanism Design for Public Goods
A randomized allocation mechanism𝑀 produces a probability distribution over feasible allocations

given agents’ reported utilities 𝑢 = (𝑢1, . . . , 𝑢𝑛) ∈ U𝑛
. We use 𝑀 (𝑢) to denote the distribution

produced by mechanism𝑀 for the reported utilities 𝑢, and at times, we also use𝑀 (𝑢) to represent

a random allocation drawn from the distribution𝑀 (𝑢), slightly abusing the notation. Agents need

not report their true utilities. They report strategically to optimize their total utility taking into

account what (they think) other agents report. If agents are always incentivized to report their true

utilities, no matter what others do, then the mechanism is dominant-strategy truthful:

Definition 1 (Dominant-strategy Truthfulness). Let𝑈𝑖 be agent 𝑖’s utility function parame-
terized by 𝑖’s true utility vector𝑢𝑖 . A randomizedmechanism𝑀 is (𝜖, 𝛿)-truthful ifE[𝑈𝑖 (𝑀 (𝑢𝑖 , 𝑢−𝑖 ))] ≥
(1 − 𝜖)E[𝑈𝑖 (𝑀 (𝑢′𝑖 , 𝑢−𝑖 ))] − 𝛿 for every 𝑖 , 𝑢′𝑖 ∈ U, and 𝑢−𝑖 ∈ U (𝑛−1) .4

If 𝜖, 𝛿 = 0, then𝑀 is exactly truthful. Approximate truthfulness is desirable in settings in which

the approximation parameters 𝜖 and 𝛿 tend to 0 as the number of agents𝑛 grows large. This property

is referred to as asymptotic truthfulness. Next, we formally define the classic notion of the core.

Definition 2 (Core). For an allocation 𝑧 ∈ Z, a set of agents 𝐴 form a blocking coalition if there
exists another allocation 𝑧′ ∈ Z such that ( |𝐴|/𝑛)𝑈𝑖 (𝑧′) ≥ 𝑈𝑖 (𝑧) for every 𝑖 ∈ 𝐴 with at least one
strict inequality. An allocation is a core outcome if it admits no blocking coalitions.

In this definition, when a subset 𝐴 of agents deviates, they can choose any feasible allocation with

the full capacity 𝑐 . However, their utility is scaled down by a factor of |𝐴|/𝑛. An alternative way

of defining a core solution is where a deviating coalition 𝐴 could choose any allocation with a

capacity of (𝑐 |𝐴|)/𝑛 instead of 𝑐 , but their utilities would not be scaled down [21, 51]. For |𝐴| = 𝑛,
both notions capture Pareto efficiency. However, for |𝐴| = 1, they provide different interpretations

of proportionality–one based on utility and one based on capacity.

For divisible goods, the core coincides with the max Nash welfare (MNW) solution:5

Lemma 3. If each𝑈𝑖 is differentiable and concave, then any allocation that maximizes
∑
𝑖 log(𝑈𝑖 (𝑧))

subject to 𝑧 ∈ Z constitutes a core solution6.

This lemma shows that the exact MNW solution is a core outcome. However, such a solution

can be irrational even when all inputs are rational [1], potentially precluding the existence of an

exact algorithm [18]. Therefore, we adopt an approximate notion of the core that still provides

meaningful guarantees:

Definition 4 (Approximate core). For 𝜖, 𝛿 ≥ 0, an allocation 𝑧 ∈ Z is an (𝜖, 𝛿)-core outcome if
there exists no set of agents𝐴 ⊆ 𝑁 and no allocation 𝑧′ ∈ Z such that ( |𝐴|/𝑛)𝑈𝑖 (𝑧′) ≥ (1+𝜖)𝑈𝑖 (𝑧) +𝛿
for all 𝑖 ∈ 𝐴 with at least one strict inequality.

When 𝜖 and 𝛿 converge to zero asymptotically as 𝑛 grows large, the allocation is said to be an

asymptotic core solution. The following lemma shows that an approximate MNW solution implies

an approximate core solution (see Appendix D.2 for the proof).

Lemma 5. Let 𝜖, 𝛿 ≥ 0. Then, 𝑧 ∈ Z is an (𝜖, 𝛿)-core outcome if, for any 𝑧′ ∈ Z, we have:
1

𝑛

∑︁
𝑖

𝑈𝑖 (𝑧′)
𝑈𝑖 (𝑧) + 𝛿/(1 + 𝜖)

≤ 1 + 𝜖 (1)

4
Subscript −𝑖 is used to refer to all agents other than agent i.

5
Similar lemmas appear in [17, 18] for other classes of utility functions. For completeness, we provide the proof of Lemma 3

in Appendix D.1.

6
In this paper, all logarithms are natural.



2.3 Mechanism Design via Differential Privacy
In this subsection, we provide some background on differential privacy as a tool for designing

truthful mechanisms. Informally, a mechanism satisfies DP if its output is nearly equally likely to

be observed for any pair of adjacent inputs. Inputs are considered adjacent if they differ in only

one element. For allocation mechanisms, inputs correspond to agents’ reported utilities. Thus,

𝑢,𝑢′ ∈ U𝑛
are adjacent if they differ solely in the reported utility of a single agent. We now formally

define DP [15]:

Definition 6 (DP). A randomized mechanism 𝑀 is (𝜖, 𝛿)-DP if, for any two adjacent inputs
𝑢,𝑢′ ∈ U𝑛 and any subset of outputs 𝑂 ⊆ Z, it satisfies P[𝑀 (𝑢) ∈ 𝑂] ≤ 𝑒𝜖P[𝑀 (𝑢′) ∈ 𝑂] + 𝛿 .7

In this definition, 𝜖 and 𝛿 control the desired level of privacy and are typically provided as inputs to

the mechanism. In general, smaller values provide stronger privacy guarantees but result in higher

levels of noise being required to be injected, which can adversely affect the quality of the output. A

mechanism that satisfies (𝜖, 𝛿)-DP is (𝜖, 𝛿)-truthful:8

Lemma 7. Let𝑀 be (𝜖, 𝛿)-DP for some 𝜖, 𝛿 < 1. Then,𝑀 is (𝜖, 𝛿)-truthful.
Proof. Consider any agent 𝑖 , and let𝑈𝑖 : Z ↦→ [0, 1] be agent 𝑖’s utility parameterized according

to their true utility vector 𝑢𝑖 . Define the set 𝑆 (𝑡) = {𝑧 | 𝑈𝑖 (𝑧) > 𝑡}. Since 𝑀 is (𝜖, 𝛿)-DP, for any
𝑢 = (𝑢𝑖 , 𝑢−𝑖 ) ∈ U𝑛

and 𝑢′𝑖 ∈ U, the following inequality holds:

P[𝑀 (𝑢) ∈ 𝑆 (𝑡)] ≥ 𝑒−𝜖P[𝑀 (𝑢′𝑖 , 𝑢−𝑖 ) ∈ 𝑆 (𝑡)] − 𝛿. (2)

Given the definition of 𝑆 (𝑡), we can rewrite (2) as:

P[𝑈𝑖 (𝑀 (𝑢)) > 𝑡] ≥ 𝑒−𝜖P[𝑈𝑖 (𝑀 (𝑢′𝑖 , 𝑢−𝑖 )) > 𝑡] − 𝛿. (3)

Given that E[𝑋 ] =
∫

1

0
P[𝑋 > 𝑡]𝑑𝑡 for any random variable 𝑋 ∈ [0, 1], we obtain the following by

integrating both sides of (3):

E[𝑈𝑖 (𝑀 (𝑢))] ≥ 𝑒−𝜖E[𝑈𝑖 (𝑀 (𝑢′𝑖 , 𝑢−𝑖 ))] − 𝛿 ≥ (1 − 𝜖)E[𝑈𝑖 (𝑀 (𝑢′𝑖 , 𝑢−𝑖 ))] − 𝛿,
where the second inequality follows because 𝑒−𝜖 ≥ 1 − 𝜖 . □

We next define Rényi differential privacy (RDP) as a relaxation of DP [41]:

Definition 8 (RDP). A randomized mechanism𝑀 is (𝛼, 𝜖)-RDP with order 𝛼 > 1 if for any two
adjacent inputs 𝑢,𝑢′ ∈ U𝑛 , it satisfies: 𝐷𝛼 (𝑀 (𝑢)∥𝑀 (𝑢′)) ≤ 𝜖 , where 𝐷𝛼 is the Rényi divergence of
order 𝛼 defined as:

𝐷𝛼 (𝑃 ∥𝑄) ≜
1

𝛼 − 1

log

(
E𝑋∼𝑄

[(
𝑃 (𝑋 )
𝑄 (𝑋 )

)𝛼 ] )
.

RDP provides strong guarantees regarding the concept of sequential composition. If 𝑀1 and

𝑀2 are (𝛼, 𝜖1)-RDP and (𝛼, 𝜖2)-RDP, respectively, then the mechanism 𝑀1,2 defined as 𝑀1,2 (𝑥) ≜
(𝑀1 (𝑥), 𝑀2 (𝑥)) is (𝛼, 𝜖1 + 𝜖2)-RDP [41, Proposition 1]. This property enables straightforward

tracking of cumulative privacy loss for iterative mechanisms. If each iteration of an iterative

mechanism is (𝛼, 𝜖)-RDP, then𝐾 iterations of the mechanism are (𝛼, 𝐾𝜖)-RDP. We use this property

to analyze our proposed mechanism in Section 4.1.

A common tool for achieving RDP is theGaussian mechanism. The Gaussianmechanism evaluates

a vector-valued function on the input and adds Gaussian noise independently to each coordinate of

the output. The noise magnitude is calibrated to the function’s ℓ2 sensitivity.

7
Symmetry of adjacency relation implies: P[𝑀 (𝑢 ) ∈ 𝑂 ] ≥ 𝑒−𝜖P[𝑀 (𝑢′ ) ∈ 𝑂 ] − 𝑒−𝜖𝛿 ≥ 𝑒−𝜖P[𝑀 (𝑢′ ) ∈ 𝑂 ] − 𝛿 .

8
When 𝛿 = 0, McSherry and Talwar [39] show that mechanisms satisfying 𝜖-differential privacy make truth-telling an

(exp(𝜖 ) − 1)-approximately dominant strategy. However, we are not aware of any existing result for the case 𝛿 > 0.

Therefore, for completeness, we provide a proof of Lemma 7.



Definition 9 (L2 sensitivity). The ℓ2 sensitivity of 𝑓 : U𝑛 ↦→ R𝑚 is defined as:

Δ2 (𝑓 ) ≜ max

adj 𝑢,𝑢′∈U𝑛
∥ 𝑓 (𝑢) − 𝑓 (𝑢′)∥2.

Given this definition, the Gaussian mechanism is formally defined as follows.

Definition 10 (Gaussian mechanism). Let N(𝜇, Σ) denote a multivariate normal distribution
with mean vector 𝜇 and covariance matrix Σ. For 𝛼 > 1, 𝜖 > 0, and function 𝑓 : U𝑛 ↦→ R𝑚 with an ℓ2
sensitivity of Δ2 (𝑓 ), the Gaussian mechanism𝑀𝐺

𝑓 ,𝛼,𝜖
is defined as:

𝑀𝐺
𝑓 ,𝛼,𝜖
(𝑢) ≜ N(𝑓 (𝑢), 𝜎2𝐼𝑚),

where 𝐼𝑚 is the𝑚 ×𝑚 identity matrix, and 𝜎2 = 𝛼Δ2

2
(𝑓 )/2𝜖 .

𝑀𝐺
𝑔,𝛼,𝜖 is (𝛼, 𝜖)-RDP [41, Corollary 3]. Moreover, if a mechanism is (𝛼, 𝜖)-RDP, then it is (𝜖 +

log(1/𝛿)/(𝛼 − 1), 𝛿)-DP for any 0 < 𝛿 < 1 [41, Proposition 3].

3 ALGORITHM
In this section, we present PPGA (Algorithm 1), an algorithm that directly maximizes a smoothed
version of the NW objective in a DP manner. Our approach involves a transformation of the

objective into a separable form. Initially, we reframe the optimization problem of Lemma 3 into a

consensus problem. Next, we convert the consensus problem into a distributed optimization using

ADMM. Finally, to ensure truthfulness, we deploy the Gaussian mechanism.

3.1 Distributed Maximization of Nash Welfare
The NW objective function,

∑
𝑖 log(𝑈𝑖 (𝑧)), poses two challenges. First, it is undefined when any

agent receives zero utility. Second, it is non-separable, as the shared variable 𝑧 appears in all

terms. To address the first issue, we use a smooth version of the NW objective:

∑
𝑖 log(𝑈𝑖 (𝑧) + 𝜐),

where 𝜐 > 0 is a small smoothing parameter that vanishes asymptotically as the number of agents

increases. To tackle the second issue, we introduce local variables 𝑥𝑖 for each agent and a shared

global variable 𝑧:

Max. 𝜃 (𝑥),
s.t. 𝑧 = 𝑥𝑖 ∀𝑖 ∈ 1, . . . , 𝑛,

𝑥𝑖 ∈ Z ∀𝑖 ∈ 1, . . . , 𝑛,

(4)

where 𝜃 (𝑥) is defined for 𝑥 = (𝑥1, . . . , 𝑥𝑛) as:

𝜃 (𝑥) ≜
∑︁
𝑖

𝜃𝑖 (𝑥𝑖 ) =
∑︁
𝑖

log(𝑈𝑖 (𝑥𝑖 ) + 𝜐).

This is referred to as the global variable consensus problem, as it requires all local variables to reach

agreement by being equal. Consensus transforms the additive objective, which does not split, into

a separable objective, which splits easily.

The partial augmented Lagrangian [28, 46] for (4) is defined as:

𝐿𝜌 (𝑥, 𝑧,𝛾) ≜
∑︁
𝑖

𝐿
𝜌

𝑖
(𝑥𝑖 , 𝑧, 𝛾𝑖 ) =

∑︁
𝑖

(
𝜃𝑖 (𝑥𝑖 ) − 𝛾𝑇𝑖 (𝑥𝑖 − 𝑧) −

𝜌

2

∥𝑥𝑖 − 𝑧∥22
)
,

where 𝛾𝑖 is a dual variable corresponding to the constraint 𝑧 = 𝑥𝑖 , and 𝜌 > 0 is a penalty parameter.

Note that, similar to 𝜃 , the function 𝐿𝜌 is separable in 𝑥 and splits into separate components 𝐿
𝜌

𝑖
for



each agent 𝑖 . We next apply ADMM to solve (4) in a distributed way through the following iterative

updates:

𝑥
(𝑘 )
𝑖
B 𝑎𝑟𝑔𝑚𝑎𝑥

𝑥𝑖 ∈Z
𝐿
𝜌

𝑖
(𝑥𝑖 , 𝑧 (𝑘−1) , 𝛾 (𝑘−1)

𝑖
) ∀𝑖 ∈ 1, . . . , 𝑛, (5a)

𝑧 (𝑘 ) B 𝑎𝑟𝑔𝑚𝑎𝑥
𝑧

𝐿𝜌 (𝑥 (𝑘 ) , 𝑧, 𝛾 (𝑘−1) ), (5b)

𝛾
(𝑘 )
𝑖
B 𝛾

(𝑘−1)
𝑖

+ 𝜌 (𝑥 (𝑘 )
𝑖
− 𝑧 (𝑘 ) ) ∀𝑖 ∈ 1, . . . , 𝑛. (5c)

In (5a), 𝑥
(𝑘 )
𝑖

’s can be computed independently for each agent 𝑖 . Moreover, we can solve (5b)

exactly by setting the gradient 𝜕𝐿𝜌/𝜕𝑧 = ∑
𝑖

(
𝛾
(𝑘−1)
𝑖

+ 𝜌 (𝑥 (𝑘 )
𝑖
− 𝑧 (𝑘 ) )

)
to zero, which leads to the

following closed-form solution:

𝑧 (𝑘 ) =
1

𝑛

∑︁
𝑖

𝑥
(𝑘 )
𝑖
+ 1

𝑛𝜌

∑︁
𝑖

𝛾
(𝑘−1)
𝑖

. (6)

We can find an optimal solution to (4) through ADMM’s iterative updates. However, this procedure

is not truthful. To address this limitation, we next incorporate DP into the process as a means of

achieving truthfulness.

3.2 DP for Maximizing Nash Welfare
To illustrate our proposed mechanism, it might be beneficial to interpret ADMM as an interactive

process. At iteration 𝑘 , each agent 𝑖 calculates the local variable 𝑥
(𝑘 )
𝑖

autonomously. Given 𝑧 (𝑘−1)

and 𝛾
(𝑘−1)
𝑖

, the value of 𝑥
(𝑘 )
𝑖

depends solely on agent 𝑖’s own utility. With 𝑥
(𝑘 )
𝑖

and 𝑧 (𝑘 ) known,

each agent 𝑖 independently calculates 𝛾
(𝑘 )
𝑖

. These local variables are then submitted by agents,

aggregated by the algorithm, and used to compute the global variable 𝑧 (𝑘 ) . This resultant global
variable is broadcast back to the agents for the next iteration.

In the context of this interactive process, to ensure DP, it is imperative that the value of the

global variable remains insensitive to any individual local variable. To achieve this, we employ the

Gaussian mechanism, adding a normal random vector 𝑞 (𝑘 ) to 𝑧 (𝑘 ) :

𝑧 (𝑘 ) =
1

𝑛

∑︁
𝑖

𝑥
(𝑘 )
𝑖
+ 1

𝑛𝜌

∑︁
𝑖

𝛾
(𝑘−1)
𝑖

+ 𝑞 (𝑘 ) . (7)

According to (5c), we have: ∑︁
𝑖

𝛾
(𝑘 )
𝑖

=
∑︁
𝑖

(
𝛾
(𝑘−1)
𝑖

+ 𝜌 (𝑥 (𝑘 )
𝑖
− 𝑧 (𝑘 ) )

)
. (8)

Replacing 𝑧 (𝑘 ) from (7) into (8), we get

∑
𝑖 𝛾
(𝑘 )
𝑖

= −𝜌𝑛𝑞 (𝑘 ) , which is used to rewrite (7) as:

𝑧 (𝑘 ) =
1

𝑛

∑︁
𝑖

𝑥
(𝑘 )
𝑖
− 𝑞 (𝑘−1) + 𝑞 (𝑘 ) . (9)

This update rule shows how 𝑧 (𝑘 ) can be calculated by adding Gaussian noise to the average of

𝑥
(𝑘 )
𝑖

’s. The magnitude of the noise can be adjusted to achieve a desired DP guarantee.

Algorithm 1 shows the pseudocode of our proposed (differentially) private public-good allocation

mechanism, PPGA. The algorithm takes as parameters 𝐾 , 𝜐, 𝜖 , 𝛿 , and 𝛼 . 𝐾 specifies the number of

iterations. 𝜐 controls the smoothness of the objective function. 𝜖 , 𝛿 , and 𝛼 together determine the

desired level of privacy–and, consequently, the level of truthfulness. Specifically, 𝜖 and 𝛿 define the

level of DP, while 𝛼 controls the variance of the Gaussian noise (see Theorem 12).



Algorithm 1: Private public-good allocation (PPGA)

1 Parameters: 𝐾 ∈ Z, 𝜐, 𝜖, 𝛿 ∈ (0, 1), 𝛼 > 1

2 𝜖′ ← (1/𝐾) (𝜖 − log(1/𝛿)/(𝛼 − 1));
3 𝜎2 ← 𝛼/𝑛2𝜖′;

4 𝑞 (0) , 𝑧 (0) , 𝛾 (0)
𝑖
, 𝑥
(0)
𝑖

= 0𝒎 ∀𝑖 ∈ 1, . . . , 𝑛;

5 for 𝑘 = 1, . . . , 𝐾 do
6 𝑥

(𝑘 )
𝑖
← 𝑎𝑟𝑔𝑚𝑎𝑥𝑥𝑖 ∈Z (𝐿

𝜌

𝑖
(𝑥𝑖 , 𝑧 (𝑘−1) , 𝛾 (𝑘−1)

𝑖
)) ∀𝑖 ∈ 1, . . . , 𝑛;

7 𝑞 (𝑘 ) ∼ N(0, 𝜎2𝐼𝑚);
8 𝑧 (𝑘 ) ← (1/𝑛)∑𝑖 𝑥

(𝑘 )
𝑖
+ 𝑞 (𝑘 ) − 𝑞 (𝑘−1)

;

9 𝛾
(𝑘 )
𝑖
← 𝛾

(𝑘−1)
𝑖

+ 𝜌 (𝑥 (𝑘 )
𝑖
− 𝑧 (𝑘 ) ) ∀𝑖 ∈ 1, . . . , 𝑛;

10 end
11 𝑧 ← (1/𝐾)∑𝐾

𝑘=1
𝑧 (𝑘 ) ;

12 𝑧 ← ΠZ (𝑧);
13 Output: 𝑧

At each iteration 𝑘 , the optimal allocation 𝑥
(𝑘 )
𝑖

is computed for each agent 𝑖 , given 𝛾
(𝑘−1)
𝑖

and

𝑧 (𝑘−1)
. This step can be executed in parallel for all agents. The algorithm then computes 𝑧 (𝑘 ) as a

noisy average of the 𝑥
(𝑘 )
𝑖

’s. Given 𝑧 (𝑘 ) and 𝑥 (𝑘 )
𝑖

, the value 𝛾
(𝑘 )
𝑖

is then computed for each agent for

the next iteration. After 𝐾 iterations, the algorithm calculates 𝑧, the time average of the 𝑧 (𝑘 ) ’s, and
returns 𝑧, the Euclidean projection of 𝑧 ontoZ.

9

3.3 Discussion
The integration of DP into ADMM inherently presents a trade-off between accuracy and privacy

(truthfulness). Achieving a more accurate MNW solution requires a higher number of iterations.

Fixing the amount of privacy loss per iteration, a higher number of iterations means a higher

cumulative privacy loss, resulting in a weaker privacy guarantee. On the other hand, achieving a

stronger privacy guarantee requires a lower cumulative privacy loss. Fixing the number of iterations,

a lower cumulative privacy loss means a higher level of noise per iteration, resulting in diminished

accuracy.

The expected value of the noise magnitude at each iteration of Algorithm 1 is:

E
[
∥𝑞 (𝑘 ) ∥2

2

]
=𝑚𝜎2 =

𝐾𝑚𝛼

𝑛2 (𝜖 − log(1/𝛿)/(𝛼 − 1)) .

Assuming that𝑚 = 𝑜 (
√
𝑛), if we choose 𝐾 = Θ(𝑛), 𝜖 = Θ(1/log(𝑛)), and 𝛿 = Θ(1/

√
𝑛), and set

𝛼 = 2 log(1/𝛿)/𝜖 + 1, then the expected noise magnitude at each iteration converges to zero as 𝑛

grows large–an essential property for achieving an asymptotic core outcome (see Section 4.2).

As a final remark, even though we described the algorithm as an interactive process in Section

3.2, we emphasize that our proposed algorithm is neither online nor interactive. All computations

are carried out by the algorithm itself, rather than by the agents. Agents submit their private utility

vectors and, at the end, observe a final allocation vector. As we show in Section 4, the algorithm

satisfies DP, ensuring that agents’ data remains private. Moreover, our mechanism guarantees

asymptotic truthfulness, meaning that as 𝑛 grows, agents have no incentive to misreport their

utilities.

9ΠZ (𝑧 ) = 𝑎𝑟𝑔𝑚𝑖𝑛𝑧′∈Z ∥𝑧 − 𝑧′ ∥22 .



4 ANALYSIS
In this section, we first show that Algorithm 1 guarantees asymptotic truthfulness. We then

demonstrate that it produces an asymptotic core solution with high probability. Finally, we analyze

its computational complexity. All omitted proofs are provided in Appendix D.

4.1 Asymptotic Truthfulness
To analyze the end-to-end privacy guarantee of Algorithm 1, we separately analyze the DP guarantee

of each iteration. Leveraging the properties of the Gaussian mechanism, we show that each iteration

of the algorithm ensures (𝛼, 𝜖′)-RDP. With the additivity property of RDP [41, Proposition 1], after

𝐾 iterations, Algorithm 1 achieves (𝛼, 𝐾𝜖′)-RDP. It then follows from [41, Proposition 3] that

Algorithm 1 is (𝜖, 𝛿)-DP.

Lemma 11. Algorithm 1 is (𝜖, 𝛿)-DP.

Proof. Algorithm 1 consists of 𝐾 iterations. At each iteration 𝑘 , the private data is 𝑥 (𝑘 ) , while

the publicly released data is 𝑧 (𝑘 ) . Note that 𝛾 (𝑘 ) is not publicly released, as each 𝛾
(𝑘 )
𝑖

is privately

computed for each agent 𝑖 . The 𝑧-update step at Line 8 of Algorithm 1 directly applies the Gaussian

mechanism to the function 𝑓 (𝑥) = 1

𝑛

∑
𝑖 𝑥𝑖 . Let 𝑥 and 𝑥 ′ be two adjacent inputs that differ only in

their 𝑖th element, i.e., 𝑥𝑖 ≠ 𝑥
′
𝑖 . Then, we have:

∥ 𝑓 (𝑥) − 𝑓 (𝑥 ′)∥2 =
1

𝑛
∥𝑥𝑖 − 𝑥 ′𝑖 ∥2.

Since 𝑥𝑖 , 𝑥
′
𝑖 ∈ [0, 1]𝑚 and ∥𝑥𝑖 ∥1, ∥𝑥 ′𝑖 ∥1 ≤ 1, it follows that:

∥𝑥𝑖 − 𝑥 ′𝑖 ∥2 ≤ (∥𝑥𝑖 ∥22 + ∥𝑥 ′𝑖 ∥22)1/2 ≤
√

2. (10)

This implies Δ2 (𝑓 ) ≤
√

2/𝑛. By [41, Corollary 3], each iteration 𝑘 of the algorithm is (𝛼, 𝜖′)-RDP.
Consequently, by [41, Proposition 1], the composition of the 𝐾 iterations satisfies (𝛼, 𝜖)-RDP, where
𝜖 = 𝐾𝜖′ = 𝜖 − log(1/𝛿)/(𝛼 − 1). Finally, by [41, Proposition 3], the 𝐾 iterations of Algorithm 1

satisfy (𝜖, 𝛿)-DP. It is important to note that computing 𝑧 after the 𝐾 iterations and projecting it

ontoZ are merely post-processing steps. Since DP is immune to post-processing [16, Proposition

2.1], these steps do not affect the privacy guarantees
10
. □

We next establish our first technical result:

Theorem 12. Algorithm 1 is asymptotically truthful.

Proof. By Lemma 11, Algorithm 1 is (𝜖, 𝛿)-DP. It then follows directly from Lemma 7 that it

is also (𝜖, 𝛿)-truthful. Setting 𝛿 = Θ(1/
√
𝑛) and 𝜖 = Θ(1/log(𝑛)), we conclude that Algorithm 1 is

asymptotically truthful. □

4.2 Asymptotic Core
Let 𝑥 = (𝑥1, . . . , 𝑥𝑛) and 𝛾 = (𝛾1, . . . , 𝛾𝑛), and define 𝑤 ≜ (𝑥, 𝑧,𝛾) ∈ W ≜ (Z𝑛,R𝑚,R𝑚𝑛). Let
𝑤 (𝑘 ) ≜ (𝑥 (𝑘 ) , 𝑧 (𝑘 ) , 𝛾 (𝑘 ) ), and define 𝐺 ≜ (𝐼𝑚, . . . , 𝐼𝑚). To show that 𝑧 is an approximate core

solution, we aim to derive an upper bound on max

𝑧∈Z

∑
𝑖
𝑈𝑖 (𝑧 )
𝑈𝑖 (𝑧 )+𝜐 . To this end, we proceed in three

steps. First, we bound max

𝑧∈Z

∑
𝑖

𝑈𝑖 (𝑧 )
𝑈𝑖 (𝑥𝑖 )+𝜐 , where 𝑥 = 1

𝐾

∑
𝑘 𝑥
(𝑘 )

. Second, we establish a bound on the

distance between 𝑧 and each 𝑥 . Finally, using the smoothness of 𝑈𝑖 ’s and applying Lemma 5, we

conclude that 𝑧 is an approximate core solution.

10
If𝑀 is (𝜖, 𝛿 )-DP, then applying any randomized mapping 𝑓 to𝑀 (𝑢 ) preserves the (𝜖, 𝛿 )-DP property.



Lemma 13. Let {𝑤 (𝑘 ) } and {𝑞 (𝑘 ) } be sequences generated by Algorithm 1. Then, we have:

1

𝑛

∑︁
𝑖

𝑈𝑖 (𝑧)
𝑈𝑖 (𝑥𝑖 ) + 𝜐

≤ 1 + 𝜌
𝐾

𝐾∑︁
𝑘=1

(𝑧 (𝑘 ) − 𝑧)𝑇𝑞 (𝑘 ) + 𝜌

2𝐾
∀𝑧 ∈ Z. (11)

The next lemma provides an upper bound on the distance between 𝑧 and any 𝑥𝑖 .

Lemma 14. Let {𝑤 (𝑘 ) } and {𝑞 (𝑘 ) } be sequences generated by Algorithm 1. Let𝑤∗ = (𝑥∗, 𝑧∗, 𝛾∗) be
an optimal solution to (4), with 𝑥∗𝑖 = 𝑧

∗ for all 𝑖 . Then, we have:

∥𝑥 −𝐺𝑧∥2 ≤
2

√
𝑛

𝐾

(
𝐾∑︁
𝑘=1

| (𝑧 (𝑘 ) − 𝑧∗)𝑇𝑞 (𝑘 ) |
) 1

2

+
√

2𝑛

𝐾
+ 2

𝜌𝐾
∥𝛾∗∥2. (12)

The right-hand side of (11) and (12) involves random variables–specifically, the sequences {𝑧 (𝑘 ) }
and {𝑞 (𝑘 ) }. The next lemma provides a bound on their tail behavior:

Lemma 15. Let {𝑤 (𝑘 ) } and {𝑞 (𝑘 ) } be sequences generated by 𝐾 = Θ(𝑛) iterations of Algorithm 1.
Suppose 𝜖 , 𝛿 , and 𝛼 are chosen such that𝑚𝜎2 < 1. Then, for any 𝑧 ∈ Z and some constant𝐶 > 0, with
probability at least 1 − 1/𝑛 − 1/𝑛𝑚 , we have:

1

𝐾

𝐾∑︁
𝑘=1

���(𝑧 (𝑘 ) − 𝑧)𝑇𝑞 (𝑘 ) ��� ≤ 𝐶√𝑚𝜎. (13)

Next, we establish that the outcome of Algorithm 1 is an approximate core solution:

Lemma 16. Suppose that 𝑚 = 𝑜 (
√
𝑛). Then, after 𝐾 = Θ(𝑛) iterations, Algorithm 1 returns an

(𝜀1, 𝜀2 (1 + 𝜀1))-core outcome with probability at least 1 − 1/𝑛 − 1/𝑛𝑚 , where:

𝜀1 = O
(√︂

𝑚 log(1/𝛿)
𝑛𝜖2

)
and 𝜀2 = O

(
4

√︂
𝑚 log(1/𝛿)

𝑛𝜖2

)
.

Finally, we establish Algorithm 1’s asymptotic fairness.

Theorem 17. Suppose that𝑚 = 𝑜 (
√
𝑛). Then, after 𝐾 = Θ(𝑛) iterations, the output of Algorithm 1

is an asymptotic core outcome with probability at least 1 − 1/𝑛 − 1/𝑛𝑚 .
Proof. If we choose𝜐 = Θ(1/

√
𝑛), 𝛿 = Θ(1/

√
𝑛), and 𝜖 = Θ(1/log(𝑛)), and set𝛼 = 2 log(1/𝛿)/𝜖+

1, then, by Lemma 16, Algorithm 1 returns an asymptotic core outcome. □

4.3 Computational Complexity

The main computation in each iteration 𝑘 of Algorithm 1 is to compute 𝑥
(𝑘 )
𝑖

for each agent 𝑖 .

This step involves solving a convex program. Several methods exist for solving broad classes

of convex optimization problems with a number of operations that grow polynomially in the

problem dimensions and logarithmically in 1/𝜉 , where 𝜉 > 0 denotes the desired accuracy [44].

Typically, such accuracy guarantees are provided with respect to the objective function value.

For the subproblem in Line 6 of Algorithm 1, however, we require an accuracy guarantee on the

first-order optimality condition (see (18)). Fortunately, due to the smoothness of𝑈𝑖 , such a guarantee

can still be achieved in polynomial time using first-order methods–such as the one proposed by Lu

and Mei [38].

Lemma 18. For any 𝑥𝑖 ∈ Z and 𝑧,𝛾𝑖 ∈ R𝑚 , a point 𝑥∗𝑖 ∈ Z that satisfies the inequality

(𝑥𝑖 − 𝑥∗𝑖 )𝑇 (∇𝜃𝑖 (𝑥∗𝑖 ) − 𝛾𝑖 − 𝜌 (𝑥∗𝑖 − 𝑧)) ≤ 𝜉 (14)

can be computed in time O(𝑚 log(𝑚)
√︁
(𝐿 + 𝜌)/𝜉 log(1/𝜉)), where 𝐿 is ∇𝜃𝑖 ’s Lipschitz constant.



We now establish our final technical result.

Theorem 19. Algorithm 1 achieves asymptotic truthfulness and computes an asymptotic core
solution with high probability in polynomial time.

Proof. Consistent with the proof of Theorem 17, let 𝐾 = Θ(𝑛) and 𝜐 = Θ(1/
√
𝑛). Then, 𝐿 ≤

(1+𝛽 )2
2𝜐2
+ 𝛽

𝜐
= Θ(𝑛). By Lemma 18, at each iteration 𝑘 and for each agent 𝑖 , we can compute a point

𝑥
(𝑘 )
𝑖

satisfying the following inequality for any 𝑧 ∈ Z:

(𝑧 − 𝑥 (𝑘 )
𝑖
)𝑇 (∇𝜃𝑖 (𝑥 (𝑘 )𝑖

) − 𝛾 (𝑘−1)
𝑖

− 𝜌 (𝑥 (𝑘 )
𝑖
− 𝑧 (𝑘−1) )) ≤ 𝜉 .

Suppose we modify Line 6 of Algorithm 1 by replacing 𝑥
(𝑘 )
𝑖

with 𝑥
(𝑘 )
𝑖

. This modification does

not affect the asymptotic truthfulness guarantee of the algorithm. However, it slightly alters the

algorithm’s approximation of the core. In particular, it can be verified that modified versions of

Lemma 13 and Lemma 14 continue to hold, with additive error terms of 𝜉 and 2

√︁
𝑛𝜉/(√𝜌𝐾) on the

right-hand sides of (11) and (12), respectively.

Choosing 𝜉 = Θ(1/
√
𝑛) ensures that Lemma 16, and therefore Theorem 17, continue to hold for

the modified algorithm. Thus, the modified algorithm preserves the asymptotic guarantees of the

original, while achieving a total running time of O(𝑛2.75
log(𝑛)𝑚 log(𝑚)). □

5 EXPERIMENTS
In this section, we aim to show that PPGA can be deployed in practice to solve large-scale public-

good allocation problems. To this end, we implement Algorithm 1 in Python using CVXPY, an
open-source Python-embedded modeling language for convex optimization problems [14]. PPGA

is highly parallelizable, particularly in the concurrent computation of 𝑥 and 𝛾 for all agents. We

leverage this feature in our implementation by distributing the computational workload across

multiple processes using Python’s multiprocessing package. The code for our implementation is

provided at https://github.com/uwaterloo-mast/PPGA.

To conduct experiments, we leverage real-world data from Pabulib.org, an open participatory

budgeting library [19]. Our experiments focus on 12 election instances, selected primarily based on

the size of their voter population and the average number of approved projects per voter
11
. Each

instance involves a collection of projects with associated costs and a designated total budget. Voters

express their preferences for the projects by casting approval votes for one or more projects. We

summarize the key characteristics of these election instances in Appendix B, and full details of

each instance, such as project costs, are provided with our code (located in the final_data folder).

As just mentioned, the instances involve approval votes and indivisible projects. We utilized

these instances to derive new ones wherein agents have cardinal utilities, and fractional allocations

are deemed acceptable. Fractional budget allocations are inspired by the motivating examples in the

introduction and various related works [10, 17, 22, 23]. We transform approval votes into cardinal

utilities according to the cost-utility approach [19] using the following procedure: For each voter

𝑖 and project 𝑗 , we set 𝑢𝑖 𝑗 = 0 if voter 𝑖 does not approve project 𝑗 , and 𝑢𝑖 𝑗 = 1 otherwise. This

ensures that voters’ utilities are proportional to the budget allocated to the projects they support
12
.

In the concluding remarks of Section 3.2, we provide guidelines for the DP parameters to

guarantee our asymptotic properties. There are also established practical norms for acceptable 𝜖

and 𝛿 values. Following these norms, we set 𝜖 = 𝑐𝜖/log(𝑛), 𝛿 = 𝑐𝛿/
√
𝑛, and 𝐾 = 𝑐𝐾𝑛, where 𝑐𝜖 = 1.5,

11
We selected representative instances from about 60 instances that had at least 10k votes.

12
Let 𝑃𝑖 be the set of projects supported by voter 𝑖 . Then, 𝑖’s utility is given by 𝑈𝑖 (𝑧 ) =

∑
𝑗 ∈𝑃𝑖 𝑧 𝑗 , where 𝑧 𝑗 ≤ 𝑠 𝑗 /𝑐

represents the fraction of the total budget allocated to project 𝑗 . This ensures that 𝑖’s utility is proportional to the budget

allocated to the projects they support.

https://github.com/uwaterloo-mast/PPGA
Pabulib.org


Inst. Core’s PS PPGA’s PS SD
Min (×𝒏) Avg Min (×𝒏) Avg (÷𝒎)

1 90.7 0.27 111.9 0.27 0.00007

2 236.4 0.30 17.1 0.29 0.00016

3 235.5 0.18 191.1 0.18 0.00014

4 216.1 0.39 37.5 0.38 0.00023

5 15.0 0.33 14.3 0.33 0.00010

6 244.7 0.39 39.9 0.38 0.00030

7 11.0 0.29 11.1 0.29 0.00045

8 122.6 0.33 128.3 0.32 0.00008

9 163.5 0.34 168.0 0.34 0.00002

10 154.4 0.16 106.9 0.16 0.00034

11 519.8 0.45 513.4 0.45 0.00002

12 261.3 0.57 130.0 0.57 0.00003

Table 1. Proportionality score and statistical distance.

𝑐𝛿 = 0.3, and 𝑐𝐾 = 0.001. We further set 𝛼 such that log(1/𝛿)/(𝛼 − 1) = 𝜖/2. This way, values for
𝜖 and 𝛿 approximate 0.3 and 0.001, respectively, keeping the noise magnitude, E

[
∥𝑞 (𝑘 ) ∥2

2

]
, under

3e-4 for the majority of instances. We note that in our experiments, we set 𝜐 = 0. The introduction

of 𝜐 as a parameter was solely motivated by a technical requirement to ensure that 𝜃𝑖 is a smooth

function. However, this smoothness condition has negligible practical significance.

We compare PPGA with the core
13
using the following metrics:

• Social welfare (SW) for an allocation 𝑧 is defined as
1

𝑛

∑
𝑖 𝑈𝑖 (𝑧). SW serves as an indicator of

the overall satisfaction achieved collectively by all agents from the allocation.

• Proportionality score (PS) of voter 𝑖 for an allocation 𝑧 is defined as the ratio of 𝑖’s utility for

𝑧 to 𝑖’s maximum attainable utility, i.e.,
𝑈𝑖 (𝑧 )

max𝑧′ ∈Z 𝑈𝑖 (𝑧′ ) . If the PS value is ≥ 1/𝑛 for all voters (or

equivalently, if the minimum value of PS across voters multiplied by 𝑛 is ≥ 1), then the allocation

is proportional (|𝐴| = 1 in Defenision 2). We report both the minimum (multiplied by 𝑛) and the

average of PS values across all voters.

• Statistical distance (SD) between an allocation 𝑧 and a core solution 𝑧∗ is measured by their total
variation distance, defined as 1

2
∥𝑧 −𝑧∗∥1. Two allocations over𝑚 items are considered statistically

close if their total variation distance is a negligible function in𝑚. To facilitate comparison, we

normalize the total variation distance by dividing it by𝑚.

For each metric, we report the average value over 50 runs.

Figure 1 illustrates the social welfare under PPGA normalized to that under the core solution,

while Table 1 summarizes proportionality scores and statistical distances across all election instances.

These results uncover several crucial insights. Firstly, the statistical distance between the budget

allocation under PPGA and the core solution remains consistently close to zero in all instances,

hovering below 0.00045 for all cases. Secondly, the observed discrepancy in social welfare values

between PPGA and the core solution consistently falls below 3% across all election instances.

Lastly, the minimum PS value ×𝑛 exceeds 1 for all instance, indicating that PPGA satisfies the

proportionality criteria for all instances. The average PS values tend to be slightly higher under the

core solution for some instances, but the discrepancy between the average PS values under PPGA

13
We find the core by solving the convex optimization of Lemma 3 using Algorithm 1 without adding noise.
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Fig. 1. Social welfare of PPGA normalized to that of core (w/ 95% confidence band).

and the core remains below 4% in all instances. Collectively, these findings strongly signify the

high level of fairness achieved by PPGA.

Our empirical findings not only corroborate the theoretical results in Section 4 but also illustrate

that PPGA yields solutions that are statistically close to the core solution for all election instances.

We expect this result to hold for any instance with a large population and a linear utility model.

This expectation is based on our proof in Theorem 17, wherein we demonstrate that the distance

between 𝑥 and 𝑧 asymptotically approaches zero with high probability. For any linear utility model,

it can be shown that the distance between 𝑥 and 𝑧∗ also asymptotically approaches zero with high

probability. Consequently, the statistical distance between 𝑧 and 𝑧∗ is asymptotically negligible for

any linear utility model. For other concave utility models, the statistical distance between 𝑧 and 𝑧∗

might be higher, depending on the curvature of the function. Nevertheless, one can demonstrate

that the difference in the value of the NW objective for 𝑧 and 𝑧∗ asymptotically approaches zero

with high probability, implying similar results for PS.

6 RELATEDWORKS
Fair resource allocationwithout money (also known as cake cutting) has been extensively studied

in the literature for private goods [47]. For public goods, the fair allocation problem has been studied

in various contexts, including fair public decision-making [11], multi-agent knapsack problems [20],

multi-winner elections [43], and participatory budgeting [45]. The truthful aggregation of agents’

preferences has also been explored in public decision-making [10, 22, 23, 27, 48]. However, the

settings in these works differ from ours, as they aim to maximize social welfare and focus on ℓ1
preferences

14
, whereas our focus is on concave preferences and maximizing Nash welfare.

The work most closely related to this paper is that of Fain et al. [17]
15
, which finds an approximate

core solution with high probability while achieving approximate truthfulness. However, due to its

reliance on several approximations, their approach fails to produce an asymptotic core solution. As

the number of agents increases, the approximation error for fairness (core) may grow. In contrast,

our approximation guarantee does not suffer from this issue. By combining the Gaussian mechanism

with ADMM to directly optimize the NW objective, our method ensures asymptotic truthfulness

and finds an asymptotic core solution with high probability.

Differentially private convex programming has been utilized in recent years to allocate

private goods [12, 30, 31, 34, 35]. These methods often employ the dual ascent technique as a key

tool [7]. The dual ascent method involves a sequence of two updates: the primal update, which

14
An agent’s disutility for an allocation is equal to the ℓ1 distance between that allocation and the agent’s most preferred

allocation.

15
Their notion of the core is based on capacity, where a blocking coalition receives a proportional share of the capacity

rather than a proportional share of utility (see Defenision 2).



optimizes the Lagrangian while fixing the dual variable, and the dual update, which takes a gradient

ascent step to update the dual variable given the optimized primal variable. However, the dual

ascent method cannot be used for maximizing the NW objective, because, as we show in Section 3,

the Lagrangian for the convex program is an affine function of some components of the primal

variable. This causes the primal update to fail, as the dual problem is unbounded below for most

values of the dual variable [7]. We avoid this by optimizing the augmented Lagrangian instead of

the Lagrangian.

Differentially private ADMMmethods have also been extensively studied [32, 33, 36, 52, 56, 57].

Although related, our work differentiates itself from these works in several aspects. Firstly, while

previous studies focus on the convergence rate of the objective function, we study the convergence

of a primal variable to an approximate core solution. To the best of our knowledge, our work is

first to prove an asymptotic, game-theoretic property for a primal variable within differentially

private ADMM. Secondly, unlike prior work that introduces noise to the local variables, PPGA adds

noise to the global variable (as detailed in Section 3). Finally, many studies on differentially private

ADMM rely on a restrictive assumption regarding the strong convexity of the objective function,

which does not hold for the NW objective.

7 CONCLUSION
In this paper, we introduce PPGA, a mechanism designed for the fair and truthful allocation of

divisible public goods. PPGA achieves fairness by directly maximizing the NW objective and

ensures truthfulness by deploying the Gaussian mechanism from differential privacy. We showed

that PPGA is asymptotically truthful and finds an asymptotic core solution with high probability.

By conducting experiments using real-world data from participatory budgeting elections, we

showcased the practical applicability of PPGA.
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A NOTATIONS

Notation Description

𝑛 Number of agents

𝑚 Number of public items

𝑠 𝑗 Size of item 𝑗

𝑠 Size vector, i.e., (𝑠1, . . . , 𝑠𝑚)
𝑐 Total capacity

𝑧 𝑗 Fraction of the total capacity that is allocated to item 𝑗

𝑧 Allocation variable, i.e., (𝑧1, . . . , 𝑧𝑚)
Z Set of all feasible allocations, i.e., {𝑧 ∈ [0, 1]𝑚 | ∥𝑧∥1 ≤ 1, 𝑐𝑧 ≤ 𝑠}

𝑈𝑖 (𝑧) Agent 𝑖’s utility function for allocation 𝑧

𝑢𝑖 Agent 𝑖’s utility vector, i.e., parameters of𝑈𝑖 : (𝑢𝑖1, . . . , 𝑢𝑖𝑑 )
U Set [0, 1]𝑑
𝑢 Utility vectors for all agents, i.e., (𝑢1, . . . , 𝑢𝑛)
𝑢−𝑖 Utility vector of all agents except agent 𝑖 , i.e., (𝑢1, . . . , 𝑢𝑖−1, 𝑢𝑖+1, . . . , 𝑢𝑛)
𝑀 (𝑢) Randomized mechanism that maps 𝑢 ∈ U𝑛 to probability distribution overZ
𝑥𝑖 Feasible allocation of agent 𝑖

𝑥 Vector of allocations, i.e., (𝑥1, . . . , 𝑥𝑛) ∈ Z𝑛
𝜃𝑖 (𝑥𝑖 ) Smoothed logarithm of agent 𝑖’s utility, i.e., log(𝑈𝑖 (𝑥𝑖 ) + 𝜖)
𝜃 (𝑥) Summation of 𝜃𝑖 ’s:

∑
𝑖 𝜃𝑖 (𝑥𝑖 )

𝐿 Lipschitz parameter of𝑈𝑖 (𝑧)’s
𝜖 Multiplicative approximation factor for truthfulness, core, and DP

𝛿 Additive approximation factor for truthfulness, core, and DP

𝛼 Rényi divergence parameter

N(𝜇, Σ) Multivariate normal distribution with mean vector 𝜇 and covariance matrix Σ
𝐾 Total number of iterations in Algorithm 1

𝑧 (𝑘 ) Global allocation variable at iteration 𝑘 , i.e., (𝑧 (𝑘 )
𝑖1

, . . . , 𝑧
(𝑘 )
𝑖𝑚
)

𝑥
(𝑘 )
𝑖

Agent 𝑖’s local allocation variable at iteration 𝑘 , i.e., (𝑥 (𝑘 )
𝑖1

, . . . , 𝑥
(𝑘 )
𝑖𝑚
)

𝑥 (𝑘 ) Vector of local allocations at iteration 𝑘 , i.e., (𝑥 (𝑘 )
1
, . . . , 𝑥

(𝑘 )
𝑛 )

𝛾
(𝑘 )
𝑖

Dual variable for 𝑧 = 𝑥𝑖 constraint at iteration 𝑘 , i.e., (𝛾 (𝑘 )𝑖1
, . . . , 𝛾

(𝑘 )
𝑖𝑚
)

𝛾 (𝑘 ) Vector of dual variables, i.e., (𝛾 (𝑘 )
1

, . . . , 𝛾
(𝑘 )
𝑛 )

𝑞 (𝑘 ) Multivariate Gaussian noise added to 𝑧 (𝑘 ) at iteration 𝑘
𝜎2

Variance of added noise to each dimension of 𝑧

𝜌 Penalty parameter for the augmented Lagrangian

𝐿
𝜌

𝑖
Agent 𝑖’s partial augmented Lagrangian with parameter 𝜌

𝐿𝜌 Summation of partial augmented Lagrangian functions, i.e., 𝑠𝑢𝑚𝑖𝐿
𝜌

𝑖
𝜂 Regularization parameter for the linearized augmented Lagrangian

𝐿
𝜌,𝜂

𝑖
Agent 𝑖’s linearized partial augmented Lagrangian with parameters 𝜌 and 𝜂

ΠZ (𝑧) Euclidean projection of 𝑧 ontoZ, i.e., 𝑎𝑟𝑔𝑚𝑖𝑛𝑧′∈Z ∥𝑧 − 𝑧′∥22
𝑧 Time average of 𝑧 (𝑘 ) ’s, i.e., (1/𝐾)∑𝐾

𝑘=1
𝑧 (𝑘 )

𝑧 Euclidean projection of 𝑧 ontoZ, i.e., Π(𝑧)
Table . List of notations



B ELECTION INSTANCES

Inst. Election # Voters # Proj. Budget Avg. # votes
(𝒏) (𝒎) (𝒄) per voter

1 Wroclaw’17 62,529 50 4,000,000 1.8

2 Warszawa’20 Praga Poludnie 14,897 134 5,900,907 9.1

3 Katowice’21 36,370 47 3,003,438 1.5

4 Warszawa’21 Mokotow 12,933 98 7,147,577 9.7

5 Wroclaw’16 Rejon NR 10-750 12,664 13 750,000 1

6 Warszawa’23 Mokotow 11,067 81 8,697,250 9.1

7 Wroclaw’16 Rejon NR 12-250 10,711 15 650,000 1

8 Wroclaw’16 67,103 52 4,500,000 1.8

9 Warszawa’22 81,234 129 28,072,528 7.9

10 Gdansk’20 30,237 28 3,600,000 1

11 Warszawa’21 95,899 106 24,933,409 8.3

12 Warszawa’20 86,721 101 24,933,409 7.2

Table 3. Characteristics of election instances.

C SUPPLEMENTARY CLAIMS
Claim 20. Let 𝑓 : D ↦→ R be strictly positive and concave. Then, 𝐹 (𝑥) = 1

𝑓 (𝑥 ) is convex.

Proof. First, not that since 𝑓 is strictly positive, 𝐹 is well-defined over 𝐷 . To show that 𝐹 is

convex, we need to verify that for any 𝑥, 𝑥 ′ ∈ 𝐷 and any 𝜆 ∈ [0, 1]:
𝐹 (𝜆𝑥 + (1 − 𝜆)𝑥 ′) ≤ 𝜆𝐹 (𝑥) + (1 − 𝜆)𝐹 (𝑥 ′).

Since 𝑓 is concave, it satisfies 𝑓 (𝜆𝑥 + (1 − 𝜆)𝑥 ′) ≥ 𝜆𝑓 (𝑥) + (1 − 𝜆) 𝑓 (𝑥 ′) for any 𝜆 ≥ 0. Because 𝑓 is

strictly positive, all terms are positive, and taking reciprocals reverses the inequality:

1

𝑓 (𝜆𝑥 + (1 − 𝜆)𝑥 ′) ≤
1

𝜆𝑓 (𝑥) + (1 − 𝜆) 𝑓 (𝑥 ′) ≤ 𝜆
1

𝑓 (𝑥) + (1 − 𝜆)
1

𝑓 (𝑥 ′) ,

where the final inequality follows from Jensen’s inequality applied to the convex function 𝑡 ↦→ 1/𝑡
on the positive reals. Thus, 𝐹 (𝑥) is convex. □

Claim 21. If 𝑓 : D ↦→ R is concave and 𝐿-Lipschitz continuous, then ∥∇𝑓 ∥2 ≤ 𝐿. Also, if 𝑓 is
concave and ∥∇𝑓 ∥2 ≤ 𝐿, then 𝑓 is 𝐿-Lipschitz continuous.

Proof. First, we show that if 𝑓 is concave and 𝐿-Lipschitz continuous, then ∥∇𝑓 ∥2 ≤ 𝐿. Since 𝑓
is concave, for all 𝑥, 𝑥 ′ ∈ 𝐷 , we have:

𝑓 (𝑥 ′) ≤ 𝑓 (𝑥) + ∇𝑓 (𝑥)𝑇 (𝑥 ′ − 𝑥).

Set 𝑥 ′ = 𝑥 − 𝛿 ∇𝑓 (𝑥 )
∥∇𝑓 (𝑥 ) ∥2 for some 0 < 𝛿 < 𝐷 , where 𝐷 = sup𝑥,𝑥 ′∈D ∥𝑥 − 𝑥 ′∥2. Then, we have:

𝛿 ∥∇𝑓 (𝑥)∥2 ≤ 𝑓 (𝑥) − 𝑓 (𝑥 ′) ≤ 𝐿∥𝑥 − 𝑥 ′∥2 = 𝐿𝛿,
where the last inequality is due to Lipschitz continuity of 𝑓 . Dividing both sides by 𝛿 yields the

desired result.

Next, we show that if 𝑓 is concave and ∥∇𝑓 ∥2 ≤ 𝐿, then 𝑓 is 𝐿-Lipschitz continuous. This follows
directly from concavity and boundedness of the gradient:

𝑓 (𝑥 ′) − 𝑓 (𝑥) ≤ ∇𝑓 (𝑥)𝑇 (𝑥 ′ − 𝑥) ≤ ∥∇𝑓 (𝑥)∥2∥𝑥 ′ − 𝑥 ∥2 ≤ 𝐿∥𝑥 ′ − 𝑥 ∥2.



By switching 𝑥 and 𝑥 ′ in the above inequality, we can show:

𝑓 (𝑥) − 𝑓 (𝑥 ′) ≤ 𝐿∥𝑥 − 𝑥 ′∥2,
for the same 𝑥 and 𝑥 ′. □

Claim 22. Let 𝑓 : D ↦→ R be concave, 𝛽-smooth, and bounded between 0 and 1. Suppose thatD is a
bounded convex set, such that sup𝑥,𝑥 ′∈D ∥𝑥 −𝑥 ′∥2 ≤ 𝐷 < ∞. Then, 𝑓 is 𝐿-Lipschitz, with 𝐿 ≤ 1

𝐷
+ 𝛽𝐷

2
.

Proof. Given that 𝑓 is concave and 𝛽-smooth, for all 𝑥, 𝑥 ′ ∈ D, we have:

𝑓 (𝑥) + ∇𝑓 (𝑥)𝑇 (𝑥 ′ − 𝑥) − 𝑓 (𝑥 ′) ≤ 𝛽

2

∥𝑥 ′ − 𝑥 ∥2
2
.

Setting 𝑥 ′ = 𝑥 + 𝛿 ∇𝑓 (𝑥 )∥ 𝑓 (𝑥 ) ∥2 , where 0 < 𝛿 ≤ 𝐷 , we have:

𝛿 ∥∇𝑓 (𝑥)∥2 ≤ 𝑓 (𝑥 ′) − 𝑓 (𝑥) +
𝛽

2

𝛿2 ≤ 1 + 𝛽
2

𝛿2.

Dividing by 𝛿 > 0 and substituting 𝛿 = 𝐷 gives us the desired upper bound on ∇𝑓 (𝑥). □

Claim 23. Let 𝑓 : D ↦→ R be concave and bounded between 0 and 1. Suppose that D is a
bounded convex set, such that sup𝑥,𝑥 ′∈D ∥𝑥 − 𝑥 ′∥2 ≤ 𝐷 < ∞. If 𝑓 is 𝛽-smooth, then for 𝜐 > 0,
ℎ(𝑥) = log(𝑓 (𝑥) + 𝜐) has 𝐿-Lipschitz gradient (i.e., is smooth), with 𝐿 ≤ 𝑀2

𝜐2
+ 𝛽

𝜐
, where𝑀 = 1

𝐷
+ 𝛽𝐷

2
.

Proof. For any 𝑥, 𝑥 ′ ∈ D, we have:

∥∇ℎ(𝑥) − ∇ℎ(𝑥 ′)∥2 =




 ∇𝑓 (𝑥)𝑓 (𝑥) + 𝜐 −

∇𝑓 (𝑥 ′)
𝑓 (𝑥 ′) + 𝜐






2

=





( 1

𝑓 (𝑥) + 𝜐 −
1

𝑓 (𝑥 ′) + 𝜐

)
∇𝑓 (𝑥) + ∇𝑓 (𝑥) − ∇𝑓 (𝑥

′)
𝑓 (𝑥 ′) + 𝜐






2

≤
���� 1

𝑓 (𝑥) + 𝜐 −
1

𝑓 (𝑥 ′) + 𝜐

���� ∥∇𝑓 (𝑥)∥2 + ∥∇𝑓 (𝑥) − ∇𝑓 (𝑥 ′)∥2𝑓 (𝑥 ′) + 𝜐

=
|𝑓 (𝑥) − 𝑓 (𝑥 ′) |

(𝑓 (𝑥) + 𝜐) (𝑓 (𝑥 ′) + 𝜐) ∥∇𝑓 (𝑥)∥2 +
∥∇𝑓 (𝑥) − ∇𝑓 (𝑥 ′)∥2

𝑓 (𝑥 ′) + 𝜐

≤ 𝑀2

𝜐2
∥𝑥 − 𝑥 ′∥2 +

𝛽

𝜐
∥𝑥 − 𝑥 ′∥2

=

(
𝑀2

𝜐2
+ 𝛽
𝜐

)
∥𝑥 − 𝑥 ′∥2,

where the last inequality follows from 𝑓 ’s𝑀-Lipschitz continuity (Claim 22) and 𝛽-smoothness. □

D OMITTED PROOFS
D.1 Proof of Lemma 3

Proof. By concavity of𝑈𝑖 , for all 𝑧, 𝑧
′ ∈ Z, we have:

𝑈𝑖 (𝑧′) −𝑈𝑖 (𝑧) ≤ ∇𝑈𝑖 (𝑧)𝑇 (𝑧′ − 𝑧). (15)

Let 𝑧∗ be an MNW solution. The first-order optimality condition for 𝑧∗ requires that the following
inequality holds for all 𝑧′ ∈ Z:∑︁

𝑖

∇𝑈𝑖 (𝑧∗)𝑇
𝑈𝑖 (𝑧∗)

(𝑧′ − 𝑧∗) ≤ 0

by (15)
======⇒ 1

𝑛

∑︁
𝑖

𝑈𝑖 (𝑧′)
𝑈𝑖 (𝑧∗)

≤ 1. (16)



For contradiction, suppose that 𝑧∗ is not a core outcome. Then, there exists a set of agents 𝐴 and

an allocation 𝑧′ such that ( |𝐴|/𝑛)𝑈𝑖 (𝑧′) ≥ 𝑈𝑖 (𝑧∗), and at least one inequality is tight. This implies

(1/𝑛)∑𝑖∈𝐴𝑈𝑖 (𝑧′)/𝑈𝑖 (𝑧∗) > 1, which contradicts (16). □

D.2 Proof of Lemma 5
Proof. Suppose, for contradiction, that 𝑧 is not a core solution. Then, there must exist a set 𝐴

and some 𝑧′ ∈ Z such that ( |𝐴|/𝑛)𝑈𝑖 (𝑧′) ≥ (1 + 𝜖)𝑈𝑖 (𝑧) + 𝛿 for all 𝑖 ∈ 𝐴, with at least one strict

inequality. This implies: (1/𝑛)∑𝑖∈𝐴𝑈𝑖 (𝑧′)/(𝑈𝑖 (𝑧) + 𝛿/(1 + 𝜖)) > 1 + 𝜖 , contradicting (1). □

D.3 Proof of Lemma 13
To prove Lemma 13, we first present the following lemma, which relates 𝑤̃ (𝑘 ) to any 𝑤 ∈ WZ ,
whereWZ ≜ {(𝑥, 𝑧,𝛾) ∈ W | 𝑥 = 𝐺𝑧}:

Lemma 24. Let {𝑤 (𝑘 ) } and {𝑞 (𝑘 ) } be sequences produced by Algorithm 1. Then, the following
inequality holds for any𝑤 ∈ WZ :

(𝑥−𝑥 (𝑘 ) )𝑇∇𝜃 (𝑥 (𝑘 ) ) + 𝛾𝑇 (𝑥 (𝑘 ) −𝐺𝑧 (𝑘 ) ) ≤ 𝜌 (𝑧 (𝑘 ) − 𝑧)𝑇𝑞 (𝑘 ) (17)

+ 𝑛𝜌
2

(
∥𝑧 − 𝑧 (𝑘−1) ∥2

2
− ∥𝑧 − 𝑧 (𝑘 ) ∥2

2

)
+ 1

2𝜌

(
∥𝛾 − 𝛾 (𝑘−1) ∥2

2
− ∥𝛾 − 𝛾 (𝑘 ) ∥2

2

)
.

Proof. The first-order optimality conditions corresponding to the update step in Line 6 of

Algorithm 1 imply the following inequality for all 𝑖 and 𝑧 ∈ Z.

(𝑧 − 𝑥 (𝑘 )
𝑖
)𝑇 (∇𝜃𝑖 (𝑥 (𝑘−1)

𝑖
) − 𝛾 (𝑘−1)

𝑖
− 𝜌 (𝑥 (𝑘 )

𝑖
− 𝑧 (𝑘−1) )) ≤ 0. (18)

Let 𝛾 (𝑘 ) ≜ 𝛾 (𝑘−1) + 𝜌 (𝑥 (𝑘 ) −𝐺𝑧 (𝑘−1) ). Then, we can rewrite (18) as:

(𝑧 − 𝑥 (𝑘 )
𝑖
)𝑇 (∇𝜃𝑖 (𝑥 (𝑘 )𝑖

) − 𝛾 (𝑘 )
𝑖
) ≤ 0.

Summing this over all 𝑖 , for any 𝑧 ∈ Z and 𝑥 = 𝐺𝑧, we have:

(𝑥 − 𝑥 (𝑘 ) )𝑇∇𝜃 (𝑥 (𝑘 ) ) − (𝑥 − 𝑥 (𝑘 ) )𝑇𝛾 (𝑘 ) ≤ 0. (19)

Next, given (7), Line 8 of Algorithm 1 implies that 𝑧 (𝑘 ) is a solution to:

maximize

𝑧

∑︁
𝑖

(
−(𝛾 (𝑘−1)

𝑖
)𝑇 (𝑥 (𝑘 )

𝑖
− 𝑧 + 𝑞 (𝑘 ) ) − 𝜌

2

∥𝑥 (𝑘 )
𝑖
− 𝑧 + 𝑞 (𝑘 ) ∥2

2

)
.

The first-order optimality conditions for this optimization imply:

(𝑧 − 𝑧 (𝑘 ) )𝑇
(∑︁
𝑖

(
𝛾
(𝑘−1)
𝑖

+ 𝜌 (𝑥 (𝑘 )
𝑖
− 𝑧 (𝑘 ) + 𝑞 (𝑘 ) )

))
≤ 0 for all 𝑧 ∈ R𝑚 . (20)

Given the definition of 𝛾 (𝑘 ) , we can rewrite (20) for all 𝑧 ∈ R𝑚 as:

(𝑧 − 𝑧 (𝑘 ) )𝑇
(∑︁
𝑖

𝛾
(𝑘 )
𝑖
− 𝑛𝜌 (𝑧 (𝑘 ) − 𝑧 (𝑘−1) ) + 𝑛𝜌𝑞 (𝑘 )

)
≤ 0 ⇒

(𝑧 − 𝑧 (𝑘 ) )𝑇
∑︁
𝑖

𝛾
(𝑘 )
𝑖
≤ 𝑛𝜌 (𝑧 − 𝑧 (𝑘 ) )𝑇 (𝑧 (𝑘 ) − 𝑧 (𝑘−1) ) − 𝑛𝜌 (𝑧 − 𝑧 (𝑘 ) )𝑇𝑞 (𝑘 ) . (21)

Next, given Line 9 of Algorithm 1, for all 𝛾 ∈ R𝑚𝑛 we have:

𝑥 (𝑘 ) −𝐺𝑧 (𝑘 ) = (𝛾 (𝑘 ) − 𝛾 (𝑘−1) )/𝜌 ⇒
(𝛾 − 𝛾 (𝑘 ) )𝑇 (𝑥 (𝑘 ) −𝐺𝑧 (𝑘 ) ) = (𝛾 − 𝛾 (𝑘 ) )𝑇 (𝛾 (𝑘 ) − 𝛾 (𝑘−1) )/𝜌. (22)



To put everything together, we use the following identity:

(𝑥 (𝑘 ) −𝐺𝑧)𝑇𝛾 (𝑘 ) + (𝑧 − 𝑧 (𝑘 ) )𝑇
∑︁
𝑖

𝛾
(𝑘 )
𝑖
+ (𝛾 − 𝛾 (𝑘 ) )𝑇 (𝑥 (𝑘 ) −𝐺𝑧 (𝑘 ) ) = 𝛾𝑇 (𝑥 (𝑘 ) −𝐺𝑧 (𝑘 ) ).

With this, we can combine (19)–(22) to get the following inequality for any𝑤 =WZ :

(𝑥 − 𝑥 (𝑘 ) )𝑇∇𝜃 (𝑥 (𝑘 ) )+𝛾𝑇 (𝑥 (𝑘 ) −𝐺𝑧 (𝑘 ) ) ≤ 𝑛𝜌 (𝑧 (𝑘 ) − 𝑧)𝑇𝑞 (𝑘 ) (23)

+ 𝑛𝜌 (𝑧 − 𝑧 (𝑘 ) )𝑇 (𝑧 (𝑘 ) − 𝑧 (𝑘−1) ) + (𝛾 − 𝛾 (𝑘 ) )𝑇 (𝛾 (𝑘 ) − 𝛾 (𝑘−1) )/𝜌.

Next, we focus on the right-hand side of (23). Given the following identity:

2(𝑎 − 𝑏)𝑇 (𝑐 − 𝑑) = ∥𝑎 − 𝑑 ∥2
2
− ∥𝑎 − 𝑐 ∥2

2
+ ∥𝑏 − 𝑐 ∥2

2
− ∥𝑏 − 𝑑 ∥2

2
,

we have:

2(𝑧 − 𝑧 (𝑘 ) )𝑇 (𝑧 (𝑘 ) − 𝑧 (𝑘−1) ) = ∥𝑧 − 𝑧 (𝑘−1) ∥2
2
− ∥𝑧 − 𝑧 (𝑘 ) ∥2

2
− ∥𝑧 (𝑘 ) − 𝑧 (𝑘−1) ∥2

2
, (24)

2(𝛾 − 𝛾 (𝑘 ) )𝑇 (𝛾 (𝑘 ) − 𝛾 (𝑘−1) ) = ∥𝛾 − 𝛾 (𝑘−1) ∥2
2
− ∥𝛾 − 𝛾 (𝑘 ) ∥2

2
− ∥𝛾 (𝑘 ) − 𝛾 (𝑘−1) ∥2

2

+ ∥𝛾 (𝑘 ) − 𝛾 (𝑘 ) ∥2
2
. (25)

Given the definition of 𝛾 (𝑘 ) and Line 9 of Algorithm 1, we have:

∥𝛾 (𝑘 ) − 𝛾 (𝑘 ) ∥2
2
= ∥𝜌 (𝑥 (𝑘 ) −𝐺𝑧 (𝑘−1) ) − (𝛾 (𝑘 ) − 𝛾 (𝑘−1) )∥2

2

= 𝜌2∥𝑥 (𝑘 ) −𝐺𝑧 (𝑘−1) − 𝑥 (𝑘 ) +𝐺𝑧 (𝑘 ) ∥2
2

= 𝑛𝜌2∥𝑧 (𝑘 ) − 𝑧 (𝑘−1) ∥2
2
. (26)

Substituting (24)–(26) into (23) gives (17). □

We are now ready to prove Lemma 13:

Proof. We start by rewriting (𝑥 − 𝑥 (𝑘−1) )𝑇∇𝜃 (𝑥 (𝑘−1) ) as:

(𝑥 − 𝑥 (𝑘 ) )𝑇∇𝜃 (𝑥 (𝑘 ) ) =
∑︁
𝑖

(𝑥𝑖 − 𝑥 (𝑘 )𝑖
)𝑇∇𝑈𝑖 (𝑥 (𝑘 )𝑖

)
𝑈𝑖 (𝑥 (𝑘 )𝑖

) + 𝜐
.

Since𝑈𝑖 (𝑥) is concave, for any 𝑖 and for any 𝑥, 𝑥 ′ ∈ Z, we have:

𝑈𝑖 (𝑥 ′) −𝑈𝑖 (𝑥) ≤ (𝑥 ′ − 𝑥)𝑇∇𝑈𝑖 (𝑥). (27)

Therefore, (17) implies:∑︁
𝑖

𝑈𝑖 (𝑥𝑖 ) + 𝜐
𝑈𝑖 (𝑥 (𝑘 )𝑖

) + 𝜐
+ 𝛾𝑇 (𝑥 (𝑘 ) −𝐺𝑧 (𝑘 ) ) ≤ 𝑛 + 𝑛𝜌 (𝑧 (𝑘 ) − 𝑧)𝑇𝑞 (𝑘 ) (28)

+ 𝑛𝜌
2

(
∥𝑧 − 𝑧 (𝑘−1) ∥2

2
− ∥𝑧 − 𝑧 (𝑘 ) ∥2

2

)
+ 1

2𝜌

(
∥𝛾 − 𝛾 (𝑘−1) ∥2

2
− ∥𝛾 − 𝛾 (𝑘 ) ∥2

2

)
.

Next, since (28) holds for any𝑤 ∈ WZ , it in particular holds when 𝛾 = 0𝑚𝑛 , which yields:

1

𝑛

∑︁
𝑖

𝑈𝑖 (𝑧) + 𝜐
𝑈𝑖 (𝑥 (𝑘−1)

𝑖
) + 𝜐

≤ 1 + 𝜌 (𝑧 (𝑘 ) − 𝑧)𝑇𝑞 (𝑘 ) (29)

+ 𝜌
2

(
∥𝑧 − 𝑧 (𝑘−1) ∥2

2
− ∥𝑧 − 𝑧 (𝑘 ) ∥2

2

)
+ 1

2𝑛𝜌

(
∥𝛾 (𝑘−1) ∥2

2
− ∥𝛾 (𝑘 ) ∥2

2

)
.



For any 𝑧 ∈ Z, we have ∥𝑧∥2
2
≤ ∥𝑧∥2

1
≤ 1. Given this inequality, by summing (29) over 𝑘 = 1 to 𝐾

and dividing by 𝐾 , we obtain the following for any 𝑧 ∈ Z:

1

𝑛

∑︁
𝑖

1

𝐾

𝐾∑︁
𝑘=1

𝑈𝑖 (𝑧) + 𝜐
𝑈𝑖 (𝑥 (𝑘 )𝑖

) + 𝜐
≤ 1 + 𝜌

𝐾

𝐾∑︁
𝑘=1

(𝑧 (𝑘 ) − 𝑧)𝑇𝑞 (𝑘 ) + 𝜌

2𝐾
. (30)

Since𝑈𝑖 (𝑥𝑖 ) + 𝜐 is strictly positive and concave, the function 1/(𝑈𝑖 (𝑥𝑖 )𝜐) is convex (Claim 20). As a

result, by Jensen’s inequality, it follows that for any 𝑧 ∈ Z, we have:

1

𝐾

𝐾∑︁
𝑘=1

𝑈𝑖 (𝑧) + 𝜐
𝑈𝑖 (𝑥 (𝑘 )𝑖

) + 𝜐
≥ 𝑈𝑖 (𝑧) + 𝜐

𝑈𝑖

(
1

𝐾

∑𝐾
𝑘=1

𝑥
(𝑘 )
𝑖

)
+ 𝜐

=
𝑈𝑖 (𝑧) + 𝜐
𝑈𝑖 (𝑥) + 𝜐

≥ 𝑈𝑖 (𝑧)
𝑈𝑖 (𝑥) + 𝜐

.

Given the last inequality, (30) implies (11). □

D.4 Proof of Lemma 14
Proof. First, we note that, since the objective function of (4) is continuous on a compact set, the

problem attains its bounded global maximum. Therefore, there exist optimal solutions 𝑧∗ ∈ Z and

𝑥∗ ∈ Z𝑛
such that 𝑥∗𝑖 = 𝑧

∗
for all 𝑖 , which achieve this maximum value [49, Theorem 4.16].

Second, strong duality holds for (4). This follows from three facts: (i) the objective function is concave,

(ii) the constraints are affine, and (iii) Slater’s condition is satisfied, i.e., there exists a strictly feasible
point that lies in the relative interior ofZ and satisfies all constraints (e.g., 𝑥𝑖 = 𝑧 = 𝑠/(𝑐 ∥𝑠 ∥) for
all 𝑖). As a result, the dual optimal value is bounded and attained, and there exist optimal Lagrange

multipliers 𝛾∗ that achieves this value [8].
Next, Since 𝑧∗ is a solution to (4), the first-order optimality conditions require

∑
𝑖 𝛾
∗
𝑖 = 0. Therefore,

by setting𝑤 = 𝑤∗ in (17), we have:

(𝑥∗−𝑥 (𝑘 ) )𝑇∇𝜃 (𝑥 (𝑘 ) ) + 𝛾∗𝑇𝑥 (𝑘 ) ≤ 𝑛𝜌 (𝑧 (𝑘 ) − 𝑧)𝑇𝑞 (𝑘 ) (31)

+ 𝑛𝜌
2

(
∥𝑧∗ − 𝑧 (𝑘−1) ∥2

2
− ∥𝑧∗ − 𝑧 (𝑘 ) ∥2

2

)
+ 1

2𝜌

(
∥𝛾∗ − 𝛾 (𝑘−1) ∥2

2
− ∥𝛾∗ − 𝛾 (𝑘 ) ∥2

2

)
.

Since 𝑥∗ is a solution to (4), the first-order optimality conditions require:

(𝑥 (𝑘 ) − 𝑥∗)𝑇 (∇𝜃 (𝑥∗) − 𝛾∗) ≤ 0. (32)

Therefore, by summing (31) and (32), we obtain:

(𝑥∗−𝑥 (𝑘 ) )𝑇 (∇𝜃 (𝑥 (𝑘 ) ) − ∇𝜃 (𝑥∗)) ≤ 𝑛𝜌 (𝑧 (𝑘 ) − 𝑧∗)𝑇𝑞 (𝑘 )

+ 𝑛𝜌
2

(
∥𝑧∗ − 𝑧 (𝑘−1) ∥2

2
− ∥𝑧∗ − 𝑧 (𝑘 ) ∥2

2

)
+ 1

2𝜌

(
∥𝛾∗ − 𝛾 (𝑘−1) ∥2

2
− ∥𝛾∗ − 𝛾 (𝑘 ) ∥2

2

)
. (33)

Since 𝜃 (𝑥) is concave, we have (𝑥 − 𝑥 ′)𝑇 (∇𝜃 (𝑥) − ∇𝜃 (𝑥 ′)) ≤ 0. Therefore, (33) implies:

∥𝛾 (𝑘 ) − 𝛾∗∥2
2
− ∥𝛾 (𝑘−1) − 𝛾∗∥2

2
≤ 𝑛𝜌2

(
2(𝑧 (𝑘 ) − 𝑧∗)𝑇𝑞 (𝑘 ) + ∥𝑧∗ − 𝑧 (𝑘−1) ∥2

2
− ∥𝑧∗ − 𝑧 (𝑘 ) ∥2

2

)
.

Given that ∥𝑧∗∥2
2
≤ 1, by summing this last inequality over 𝑘 = 1 to 𝐾 , we get:

∥𝛾 (𝐾 ) − 𝛾∗∥2
2
≤ 2𝑛𝜌2

𝐾∑︁
𝑘=1

(𝑧 (𝑘 ) − 𝑧∗)𝑇𝑞 (𝑘 ) + 𝑛𝜌2 + ∥𝛾∗∥2
2
. (34)



Next, we have:

∥𝜌𝐾 (𝑥 −𝐺𝑧)∥2
2
= ∥𝛾 (𝐾 ) ∥2

2
= ∥𝛾 (𝐾 ) − 𝛾∗ + 𝛾∗∥2

2

≤ 2∥𝛾∗∥2
2
+ 2∥𝛾 (𝐾 ) − 𝛾∗∥2

2

≤ 4𝑛𝜌2

𝐾∑︁
𝑘=1

(𝑧 (𝑘 ) − 𝑧∗)𝑇𝑞 (𝑘 ) + 2𝑛𝜌2 + 4∥𝛾∗∥2
2
,

which implies:

∥𝑥 −𝐺𝑧∥2 ≤
2

√
𝑛

𝐾

(
𝐾∑︁
𝑘=1

| (𝑧 (𝑘 ) − 𝑧∗)𝑇𝑞 (𝑘 ) |
) 1

2

+
√

2𝑛

𝐾
+ 2

𝜌𝐾
∥𝛾∗∥2. (35)

The Euclidean projection ontoZ is contractive. Therefore, since 𝑥, 𝑧 ∈ Z, we have:

∥𝑥 −𝐺𝑧∥2 = ∥𝑥 −𝐺ΠZ (𝑧)∥2 ≤ ∥𝑥 −𝐺𝑧∥2 .
Given this inequality, (35) implies (12). □

D.5 Proof of Lemma 15
Proof. For any 𝑧 ∈ Z, we have:

| (𝑧 (𝑘 ) − 𝑧)𝑇𝑞 (𝑘 ) | = | ( 1
𝑛

∑︁
𝑖

𝑥
(𝑘 )
𝑖
+ 𝑞 (𝑘 ) − 𝑞 (𝑘−1) − 𝑧)𝑇𝑞 (𝑘 ) |

≤ |( 1
𝑛

∑︁
𝑖

𝑥
(𝑘 )
𝑖
)𝑇𝑞 (𝑘 ) | + ∥𝑞 (𝑘 ) ∥2

2
+ |𝑞 (𝑘−1)𝑇𝑞 (𝑘 ) | + |𝑧𝑇𝑞 (𝑘 ) |

≤ ∥ 1

𝑛

∑︁
𝑖

𝑥
(𝑘 )
𝑖
∥1∥𝑞 (𝑘 ) ∥2 + ∥𝑞 (𝑘 ) ∥22 + |𝑞 (𝑘−1)𝑇𝑞 (𝑘 ) | + ∥𝑧∥1∥𝑞 (𝑘 ) ∥2

≤ 2∥𝑞 (𝑘 ) ∥2 + ∥𝑞 (𝑘 ) ∥22 + |𝑞 (𝑘−1)𝑇𝑞 (𝑘 ) |. (36)

Here, the first inequality follows from the triangle inequality. The second inequality follows from

the Cauchy–Schwarz inequality and the fact that ∥ · ∥2 ≤ ∥ · ∥1–that is, for any vectors 𝑎 and

𝑏 in an inner product space, |𝑎𝑇𝑏 | ≤ ∥𝑎∥2∥𝑏∥2 ≤ ∥𝑎∥1∥𝑏∥2. The third inequality holds because

1

𝑛

∑
𝑖 𝑥
(𝑘 )
𝑖
∈ Z, and for any 𝑧 ∈ Z, we have ∥𝑧∥2 ≤ ∥𝑧∥1 ≤ 1. Finally, for the last term in (36), we

apply Young’s inequality to obtain:

|𝑞 (𝑘−1)𝑇𝑞 (𝑘 ) | ≤ 1

2

∥𝑞 (𝑘−1) ∥2
2
+ 1

2

∥𝑞 (𝑘 ) ∥2
2
,

Substituting the last inequality into (36) and summing over 𝑘 , we have:

|
𝐾∑︁
𝑘=1

(𝑧 (𝑘 ) − 𝑧)𝑇𝑞 (𝑘 ) | ≤
𝐾∑︁
𝑘=1

| (𝑧 (𝑘 ) − 𝑧)𝑇𝑞 (𝑘 ) |

≤ 2

𝐾∑︁
𝑘=1

(
∥𝑞 (𝑘 ) ∥2

2
+ ∥𝑞 (𝑘 ) ∥2

)
. (37)

We next focus on tail behavior of ∥𝑞 (𝑘 ) ∥2
2
and ∥𝑞 (𝑘 ) ∥2 separately. Starting with ∥𝑞 (𝑘 ) ∥22, note that

each 𝑞
(𝑘 )
𝑗
∼ N(0, 𝜎2) is a sub-Gaussian random variable

16
. Therefore, by [55, Lemma 2.7.6], each

16
A real-valued random variable 𝑋 is called sub-Gaussian if there exists a constant 𝜎 > 0 such that for all 𝑡 ∈ R,
E[exp(𝑡 (𝑋 − E[𝑋 ] ) ) ] ≤ exp( (𝑡2𝜎2 )/2) .



(𝑞 (𝑘 )
𝑗
)2 is sub-exponential17, with E[(𝑞 (𝑘 )

𝑗
)2] = 𝜎2

and

∥(𝑞 (𝑘 )
𝑗
)2 − 𝜎2∥𝜓1

≤ 𝐶1𝜎
2,

where 𝐶1 is a constant, and ∥𝑋 ∥𝜓1
= inf{𝑡 > 0 | E[exp( |𝑋 |/𝑡)] ≤ 2} denotes the sub-exponential

norm of a real-valued random variable 𝑋 . Since 𝑞
(𝑘 )
𝑗

’s are i.i.d. across all 𝑘 and 𝑗 , for any 𝑡 ≥ 0 and

some constant 𝑐1, Bernstein’s inequality [55, Theorem 2.8.1] implies:

P

[
𝐾∑︁
𝑘=1

∥𝑞 (𝑘 ) ∥2
2
− 𝐾𝑚𝜎2 ≥ 𝑡

]
≤ exp

(
−𝑐1 min

(
𝑡2

𝐾𝑚𝜎4
,
𝑡

𝜎2

))
. (38)

Next, by [55, Theorem 3.1.1 and Lemma 2.6.8], ∥𝑞 (𝑘 ) ∥2 is a sub-Gaussian random variable with


∥𝑞 (𝑘 ) ∥2 − E [
∥𝑞 (𝑘 ) ∥2

]



𝜓2

≤ 𝐶2𝜎
2,

where 𝐶2 is a constant, and ∥𝑋 ∥𝜓2
= inf{𝑡 > 0 | E[exp(𝑋 2/𝑡2)] ≤ 2} denotes the sub-Gaussian

norm of a real-valued random variable 𝑋 . Since 𝑞 (𝑘 ) ’s are independent, by the general Hoeffding’s
inequality [55, Theorem 2.6.2], for any 𝑡 ≥ 0 and some constant 𝑐2, we have:

P

[
𝐾∑︁
𝑘=1

(
∥𝑞 (𝑘 ) ∥2 − E

[
∥𝑞 (𝑘 ) ∥2

] )
≥ 𝑡

]
≤ exp(− 𝑐2𝑡

2

𝐾𝜎4
).

We next provide an upper bound on E
[
∥𝑞 (𝑘 ) ∥2

]
. Consider the inequality

√
𝑢 ≤ (1 + 𝑢)/2 which

holds for any 𝑢 ≥ 0. By setting 𝑢 = 1

𝑚𝜎2
∥𝑞 (𝑘 ) ∥2

2
, we get:

∥𝑞 (𝑘 ) ∥2√
𝑚𝜎

≤
1 + (1/𝑚𝜎2)∥𝑞 (𝑘 ) ∥2

2

2

.

Taking expectations on both sides of the inequality, we obtain:

E
[
∥𝑞 (𝑘 ) ∥2

]
≤
√
𝑚𝜎

1 + 1

2

=
√
𝑚𝜎.

Therefore, we have:

P

[
𝐾∑︁
𝑘=1

∥𝑞 (𝑘 ) ∥2 − 𝐾
√
𝑚𝜎 ≥ 𝑡

]
≤ P

[
𝐾∑︁
𝑘=1

(
∥𝑞 (𝑘 ) ∥2 − E

[
∥𝑞 (𝑘 ) ∥2

] )
≥ 𝑡

]
≤ exp(− 𝑐2𝑡

2

𝐾𝜎4
). (39)

Given (37)–(39) and the union bound, for 𝑡 ′ = 4𝑡 + 2𝐾𝑚𝜎2 + 2𝐾
√
𝑚𝜎 , we have:

P

[
|
𝐾∑︁
𝑘=1

(𝑧 (𝑘 ) − 𝑧)𝑇𝑞 (𝑘 ) | ≥ 𝑡 ′
]
≤ P

[
2

𝐾∑︁
𝑘=1

(
∥𝑞 (𝑘 ) ∥2

2
+ ∥𝑞 (𝑘 ) ∥2

)
≥ 𝑡 ′

]
≤ P

[
𝐾∑︁
𝑘=1

∥𝑞 (𝑘 ) ∥2
2
− 𝐾𝑚𝜎2 ≥ 𝑡

]
+P

[
𝐾∑︁
𝑘=1

∥𝑞 (𝑘 ) ∥2 − 𝐾
√
𝑚𝜎 ≥ 𝑡

]
≤ exp

(
−𝑐1 min

(
𝑡2

𝐾𝑚𝜎4
,
𝑡

𝜎2

))
+ exp(− 𝑐2𝑡

2

𝐾𝜎4
).

17
A real-valued random variable 𝑋 is called sub-exponential if there exist constants 𝜈, 𝛼 > 0 such that for all |𝑡 | < 1/𝛼 ,
E[exp(𝑡 (𝑋 − E[𝑋 ] ) ) ] ≤ exp( (𝑡2𝜈2 )/2) .



For some constant 𝑐 , setting 𝑡 = 𝑐
√
𝐾𝑚𝜎2

log
1/2 (𝑛) in the previous inequality implies that the

following inequality holds with probability at least 1 − 1/𝑛 − 1/𝑛𝑚 for any 𝑧 ∈ Z.

1

𝐾

𝐾∑︁
𝑘=1

| (𝑧 (𝑘 ) − 𝑧)𝑇𝑞 (𝑘 ) | ≤ 4𝑐
√
𝑚𝜎2

log
1/2 (𝑛)
√
𝐾

+ 2𝑚𝜎2 + 2

√
𝑚𝜎. (40)

Since𝑚𝜎2 < 1, (40) implies (13). □

D.6 Proof of Lemma 16
Proof. Let {𝑤 (𝑘 ) } and {𝑞 (𝑘 ) } be sequences generated by Algorithm 1. Let𝑤∗ = (𝑥∗, 𝑧∗, 𝛾∗) be a

solution to (4). Define 𝛾∗
max

and 𝑧 as:

𝛾∗
max

= max

𝑖, 𝑗
|𝛾∗𝑖, 𝑗 | and 𝑧 = 𝑎𝑟𝑔𝑚𝑎𝑥

𝑧∈Z

∑︁
𝑖

𝑈𝑖 (𝑧) + 𝜐
𝑈𝑖 (𝑥𝑖 ) + 𝜐

.

Further, define 𝜀1 and 𝜀2 as:

𝜀1 =
𝜌

𝐾

𝐾∑︁
𝑘=1

| (𝑧 (𝑘 ) − 𝑧)𝑇𝑞 (𝑘 ) | + 𝜌

2𝐾
,

and

𝜀2 =
2𝐿
√
𝑛

𝐾

(
𝐾∑︁
𝑘=1

| (𝑧 (𝑘 ) − 𝑧∗)𝑇𝑞 (𝑘 ) |
)

1/2

+ 𝐿
√

2𝑛

𝐾
+ 2𝐿
√
𝑛𝑚

𝜌𝐾
𝛾∗

max
+ 𝜐,

where 𝐿 = (1 + 𝛽)/
√

2. By Lemma 13 and the definition of 𝑧, for any 𝑧 ∈ Z, we have:

1

𝑛

∑︁
𝑖

𝑈𝑖 (𝑧) + 𝜐
𝑈𝑖 (𝑥𝑖 ) + 𝜐

≤ 1

𝑛

∑︁
𝑖

𝑈𝑖 (𝑧) + 𝜐
𝑈𝑖 (𝑥𝑖 ) + 𝜐

≤ 1 + 𝜀1 . (41)

Each 𝑈𝑖 is concave, 𝛽-smooth, and bounded between 0 and 1. The domainZ is also bounded (see

(10)). Therefore, each𝑈𝑖 is 𝐿-Lipschitz (Claim 22). Given this, and the fact that ∥𝑥𝑖 −𝑧∥2 ≤ ∥𝑥 −𝐺𝑧∥2
for any 𝑖 , Lemma 14 implies the following:

𝑈𝑖 (𝑥) ≤ 𝑈𝑖 (𝑧) + 𝜀2 − 𝜐 ∀𝑖 . (42)

Combining (41) and (42), for any 𝑧 ∈ Z, we have:

1

𝑛

∑︁
𝑖

𝑈𝑖 (𝑧)
𝑈𝑖 (𝑧) + 𝜀2

≤ 1

𝑛

∑︁
𝑖

𝑈𝑖 (𝑧) + 𝜐
𝑈𝑖 (𝑧) + 𝜀2

≤ 1 + 𝜀1. (43)

Given (43), Lemma 5 implies that 𝑧 is an (𝜀1, 𝜀2 (1 + 𝜀1))-core outcome. Assuming 𝐾 = Θ(𝑛), and
setting 𝛼 = 2 log(1/𝛿)/𝜖 + 1, we have:

𝑚𝜎2 =
𝐾𝑚𝛼

𝑛2 (𝜖 − log(1/𝛿)/(𝛼 − 1)) = O
(
𝑚 log(1/𝛿)

𝑛𝜖2

)
.

Since𝑚 = 𝑜 (
√
𝑛), if we set 𝜐 = Θ(1/

√
𝑛) and choose 𝜖, 𝛿 > 0 such that𝑚𝜎2 < 1, then we can apply

Lemma 15 to establish the lemma. □



D.7 Proof of Lemma 18
Proof. For any 𝑧,𝛾𝑖 ∈ R𝑚 , let ℎ(𝑥𝑖 ) ≜ −𝐿𝜌𝑖 (𝑥𝑖 , 𝑧, 𝛾𝑖 ). To prove the lemma, we rely on [38,

Theorem 4]. To apply this theorem, the following four conditions must hold: (1) ℎ is convex; (2) the

diameter ofZ is bounded; (3) there exists a point in the interior ofZ; and (4) ℎ(𝑥𝑖 ) has a Lipschitz
continuous gradient overZ. Condition (1) is straightforward to verify. Condition (2) is established

in (10). For (3), we note that a point such as 𝑧 = 𝑠/(𝑐 ∥𝑠 ∥) lies in the relative interior ofZ. Regarding

(4), by Claim 23, 𝜃𝑖 has an 𝐿-Lipschitz continuous gradient overZ with 𝐿 ≤ 𝑀2

𝜐2
+ 𝛽
𝜐
, where𝑀 =

1+𝛽√
2

.

It then follows from the definition of ℎ that it has an (𝐿 + 𝜌)-Lipschitz continuous gradient overZ.

Since these four conditions are satisfied, by [38, Theorem 4], we can find a point 𝑥∗𝑖 ∈ Z and a

residual 𝑣 ∈ R𝑚 such that:

𝑣 ∈ 𝜕
(
ℎ(𝑥∗𝑖 ) + 1Z (𝑥∗𝑖 )

)
, and ∥𝑣 ∥2 ≤

𝜉

2

, (44)

where 1𝑆 denotes the indicator function
18
of the set 𝑆 , and 𝜕𝑓 denotes the subdifferential19 of the

convex function 𝑓 . This guarantee can be achieved using at most

O
(√︄

𝐿 + 𝜌
𝜉

log(1/𝜉)
)

(45)

projections ontoZ, a convergence rate that is optimal up to a logarithmic factor.

Next, we observe that since Z has nonempty interior, the subdifferential of the sum of convex

functions equals the sum of their subdifferentials [3, Theorem 3.40]. Therefore, we can rewrite (44)

as:

𝑣 ∈ ∇ℎ(𝑥∗𝑖 ) + 𝜕1Z(𝑥∗𝑖 ), and ∥𝑣 ∥2 ≤
𝜉

2

. (46)

It is also straightforward to verify that 𝜕1Z (𝑥∗𝑖 ) = 𝑁Z (𝑥∗𝑖 ), where 𝑁Z denotes the normal cone of

Z, defined as: 𝑁𝑆 (𝑥) ≜ {𝑦 ∈ R𝑚 : 𝑦𝑇 (𝑢 − 𝑥) ≤ 0,∀𝑢 ∈ 𝑆} [50]. Using this identity, we can further

rewrite (46) as:

𝑣 − ∇ℎ(𝑥∗𝑖 ) ∈ 𝑁Z (𝑥∗𝑖 ), and ∥𝑣 ∥2 ≤
𝜉

2

. (47)

Finally, since sup𝑥,𝑥 ′∈Z ∥𝑥 − 𝑥 ′∥2 ≤
√

2 ≤ 2, we can apply the Cauchy–Schwarz inequality to

conclude that, for any 𝑧 ∈ Z, the following holds.

−(𝑧 − 𝑥∗𝑖 )𝑇∇ℎ(𝑥∗𝑖 ) ≤ −(𝑧 − 𝑥
(𝑘 )
𝑖
)𝑇 𝑣 ≤ ∥𝑣 ∥2∥𝑧 − 𝑥 (𝑘 )𝑖

∥2 ≤
𝜉

2

(2) = 𝜉 . (48)

Given that −∇ℎ(𝑥∗𝑖 ) = ∇𝜃𝑖 (𝑥∗) − 𝛾𝑖 − 𝜌 (𝑥∗𝑖 − 𝑧), it follows that (48) implies (14).

It is well-known that projecting a vector in R𝑚 ontoZ can be done in O(𝑚 log(𝑚)) time using a

sorting-based algorithm (e.g., see [29, Algorithm 5.1]). Consequently, a point 𝑥∗𝑖 satisfying (14) can

be computed in total time

O
(
𝑚 log(𝑚) ·

√︄
𝐿 + 𝜌
𝜉

log(1/𝜉)
)
.

□

18
1𝑆 (𝑥 ) equals 0 if 𝑥 ∈ 𝑆 , and +∞ otherwise.

19𝜕𝑓 (𝑥 ) ≜ {𝑢 ∈ R𝑚 : 𝑓 (𝑥 ′ ) ≥ 𝑓 (𝑥 ) +𝑢𝑇 (𝑥 ′ − 𝑥 ), ∀𝑥 ′ ∈ dom(𝑓 ) }


	Abstract
	1 Introduction
	1.1 Our Contributions

	2 Preliminaries
	2.1 Problem Formulation
	2.2 Mechanism Design for Public Goods
	2.3 Mechanism Design via Differential Privacy

	3 Algorithm
	3.1 Distributed Maximization of Nash Welfare
	3.2 DP for Maximizing Nash Welfare
	3.3 Discussion

	4 Analysis
	4.1 Asymptotic Truthfulness
	4.2 Asymptotic Core
	4.3 Computational Complexity

	5 Experiments
	6 Related Works
	7 Conclusion
	References
	A Notations
	B Election Instances
	C Supplementary Claims
	D Omitted Proofs
	D.1 Proof of Lemma ??
	D.2 Proof of Lemma ??
	D.3 Proof of Lemma ??
	D.4 Proof of Lemma ??
	D.5 Proof of Lemma ??
	D.6 Proof of Lemma ??
	D.7 Proof of Lemma ??


