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We study the fair and truthful allocation of m divisible public items among n agents, each with distinct
preferences for the items. To aggregate agents’ preferences fairly, we focus on finding a core solution. For
divisible items, a core solution always exists and can be calculated by maximizing the Nash welfare objective.
However, such a solution is easily manipulated; agents might have incentives to misreport their preferences.
To mitigate this, the current state-of-the-art finds an approximate core solution with high probability while
ensuring approximate truthfulness. However, this approach has two main limitations. First, due to several
approximations, the approximation error in the core could grow with n, resulting in a non-asymptotic core
solution. This limitation is particularly significant as public-good allocation mechanisms are frequently applied
in scenarios involving a large number of agents, such as the allocation of public tax funds for municipal projects.
Second, implementing the current approach for practical applications proves to be a highly nontrivial task. To
address these limitations, we introduce PPGA, a (differentially) Private Public-Good Allocation algorithm,
and show that it attains asymptotic truthfulness and finds an asymptotic core solution with high probability.
Additionally, to demonstrate the practical applicability of our algorithm, we implement PPGA and empirically
study its properties using municipal participatory budgeting data.

1 INTRODUCTION

Unlike the allocation of private goods, where each item goes to a single agent, public goods allow
multiple agents to benefit from an allocated item. In this paper, we study the problem of fairly
allocating m divisible public goods among n agents in a truthful manner. Different agents hold
distinct preferences for the items. Each item has a size, and the total size of allocated items should not
exceed the available capacity. The fair allocation of divisible public goods is a fundamental problem
in social choice theory with many real-world applications. Examples include: (1) federal/state
budget allocations between services such as healthcare, education, and defense or municipal budget
allocations to improve utilities such as libraries, parks, and roads?; (2) shared memory allocations
between files with different sizes; and (3) time allocations between activities during events.

An allocation mechanism produces outcomes based on reported preferences of all agents. Agents
need not reveal their true preferences but strategically report them to maximize their utility. For
instance, consider a setting where there are one or more commonly preferred items. Such items are
highly likely to be allocated regardless of the reported preferences of a single agent. Given this
and assuming that other agents report their preference truthfully, agents could be incentivized to
free-ride by falsely claiming disinterest in commonly preferred items and reporting preferences
only for their individually preferred items. By doing so, free riders increase the chances of their
individually preferred items being allocated under a fair allocation mechanism.

To aggregate agents’ preferences fairly, we focus on the classic game theoretic notion of the
core [13, 25]. The core generalizes well-studied notions of proportionality and Pareto efficiency by
ensuring group-wise fairness, providing fair outcomes to each agent subset relative to its size. The
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notion of the core has been extensively studied in the context of public-good allocation [17, 18,
21, 42, 43]. For allocating divisible public goods, the core always exists, and it can be calculated by
maximizing Nash welfare (NW) objective (i.e., the product of agents’ utilities) [17]. However, the
core is easy to manipulate; agents might be incentivized to free-ride.

To address this issue, Fain et al. [17] propose a method that aims to find an approximate core
solution with high probability while also achieving approximate truthfulness. This method relies
on the exponential mechanism derived from differential privacy [39]. The exponential mechanism
uses a scoring function to assign a score to each outcome. Subsequently, a sample is drawn from a
distribution that exponentially weights outcomes based on their scores. This guarantees that the
selected outcome’s score is approximately maximized with high probability.

Informally, differential privacy ensures that the output of a mechanism does not change signif-
icantly when any agent unilaterally modifies their data. This emphasis on unilateral deviations
aligns closely with truthfulness in mechanism design, where a mechanism is truthful if agents have
no incentive to misreport their types. As a result, differentially private mechanisms can be shown
to be approximately dominant-strategy truthful [39]. For the exponential mechanism, the level of
differential privacy—and consequently, truthfulness-is contingent on the sensitivity? of the scoring
function to the reported input of any individual agent. Higher sensitivity corresponds to a lower
quality of the guarantee.

The use of the exponential mechanism for public-good allocation faces two primary challenges.
First, while the NW objective seems to be an ideal choice for the scoring function, its direct use is
hindered by its high sensitivity to each agent’s reported preferences. This limitation arises since
the NW objective is not separable®. To address this, Fain et al. [17] propose using a proxy function
to replace the NW objective in the scoring function.

The introduced proxy function strikes a balance between reducing the sensitivity of the scoring
function—-thereby improving truthfulness approximation—-and retaining sufficient sensitivity to
ensure an acceptable approximation to the core. However, the use of the proxy function, along
with other approximations, introduces an approximation error in satisfying the core conditions.
This approximation error can grow with the number of agents, potentially resulting in a solution
that does not satisfy the asymptotic core. This limitation is particularly significant as public-good
allocation mechanisms are frequently applied in scenarios involving a large number of agents, such
as participatory budgeting elections for distributing municipal budgets.

Secondly, sampling an m-dimensional allocation from a distribution poses a significant practical
challenge. To tackle this, Fain et al. [17] propose employing the hit-and-run method [53] to sample
an allocation from an “approximately right distribution.” However, implementing the hit-and-run
method for practical applications proves to be a highly nontrivial task, as discussed in the conclusion
of Sec. 2.2 by Lovasz and Vempala [37]. Moreover, the implications of the extra approximation on
the guarantees of truthfulness and core remain unclear.

1.1  Our Contributions

In Section 3, we introduce PPGA, a novel differentially private algorithm for public-good allocation.
A key feature of PPGA is its approach to maximize the NW objective in a differentially private
way without requiring a proxy objective. As previously discussed, the non-separable nature of the
NW objective poses challenges in deploying differentially private mechanisms [17]. To tackle this
challenge, we employ a key technique called global variable consensus optimization [7]. Consensus

Informally, the sensitivity of a function is the maximum change in its output resulting from a change in its input (refer to
Section 2.3 for a formal definition).
3£ (x) is separable with respect to a partition of x into n sub-vectors x = (xj, ..., xn) if f(x) =3 fi(xi).



transforms the NW objective into a separable form that splits easily. Leveraging the alternating
direction method of multipliers (ADMM) [24, 26] enables us to maximize the NW objective in a
distributed manner. And this further allows us to employ the Gaussian mechanism [39] from
differential privacy to achieve truthfulness. The application of differentially private ADMM to the
global variable consensus problem for Nash welfare optimization is a novel contribution of this
work.

In Section 4, we analytically study the properties of our proposed algorithm. Our primary
technical contribution lies in showing that, for carefully chosen ¢,§ > 0, PPGA achieves (¢, §)-
truthfulness and returns an (e, £2(1 + £1))-core outcome with probability at least 1 — 1/n — 1/n™,

where
81:0( mlog(1/5)) i 6220(4 mlog(1/5))'

ne? ne?

Assuming that m = o(+/n) and setting € = ©(1/log(n)) and § = ©(1/+/n), we further demonstrate
that PPGA is asymptotically truthful (Theorem 12) and yields an asymptotic core solution with
high probability (Theorem 17). To our knowledge, PPGA is the first polynomial-time algorithm
(Theorem 19) that offers these guarantees.

In Section 5, we demonstrate that PPGA can be deployed in practice to solve large-scale public-
good allocation problems. To this end, we implement PPGA and utilize our implementation to
compare the outcome of PPGA with a core solution using data obtained from real-world participa-
tory budgeting elections [19].

2 PRELIMINARIES

In this section, we first define the public-good allocation problem and its desired properties. We
then provide an overview of differential privacy as a tool for designing truthful mechanisms. A
summary of our notations is presented in Appendix A

2.1 Problem Formulation

We consider a public-good allocation problem with n agents and m divisible public items (m < n).
The size of each item j is denoted by s; € R, and the size vector is denoted by s = (sq,...,sm).
The total available capacity is ¢ € R(. An allocation is a vector z = (zy, ..., zm) € [0, 1]™, where
zj represents the fraction of the total capacity that is allocated to item j. The set of all feasible
allocations is denoted by:

Z={ze[0,1]"|llzlls £ 1, cz < s}.

Agent i’s utility function for an allocation z € Z is denoted by U;(z) and is parameterized by
the utility vector u; = (u;1,. .., u;q), where d is a positive integer. For example, for a linear utility
function of the form U;(z) = XL, u;;z;, we have d = m, and each u;; represents the relative value
that agent i assigns to the fraction of the budget allocated to item j. In this paper, we focus on a
subclass of utility functions defined on Z that are differentiable, strictly increasing, concave, and
B-smooth, i.e., they have S-Lipschitz continuous gradients:

IVUi(2) = VUi(2)llz < Bllz = 2’2

This subclass includes the common linear utility functions, which generalize additive utilities
studied by [2, 4-6, 9, 18, 40, 45, 54]. Without loss of generality, we assume that U; € [0, 1] for all i,
with U;(0,,) = 0 and U;(z) > 0 for some z € Z. We further assume that u; € U for every i, where
U = 0,1]%



2.2 Mechanism Design for Public Goods

A randomized allocation mechanism M produces a probability distribution over feasible allocations
given agents’ reported utilities u = (uy,...,u,) € U™ We use M(u) to denote the distribution
produced by mechanism M for the reported utilities u, and at times, we also use M(u) to represent
a random allocation drawn from the distribution M(u), slightly abusing the notation. Agents need
not report their true utilities. They report strategically to optimize their total utility taking into
account what (they think) other agents report. If agents are always incentivized to report their true
utilities, no matter what others do, then the mechanism is dominant-strategy truthful:

DEFINITION 1 (DOMINANT-STRATEGY TRUTHFULNESS). Let U; be agent i’s utility function parame-
terized byi’s true utility vectoru;. A randomized mechanism M is (¢, &) -truthful if E[U; (M (u;, u—;))] >
(1-e)E[Ui(M(u;, u_;))] — 6 foreveryi,u; € U, andu_; € U1 4

If €,8 = 0, then M is exactly truthful. Approximate truthfulness is desirable in settings in which
the approximation parameters € and § tend to 0 as the number of agents n grows large. This property
is referred to as asymptotic truthfulness. Next, we formally define the classic notion of the core.

DEFINITION 2 (CORE). For an allocation z € Z, a set of agents A form a blocking coalition if there
exists another allocation 2’ € Z such that (|A|/n)U;(z") > U;(z) for every i € A with at least one
strict inequality. An allocation is a core outcome if it admits no blocking coalitions.

In this definition, when a subset A of agents deviates, they can choose any feasible allocation with
the full capacity c¢. However, their utility is scaled down by a factor of |A|/n. An alternative way
of defining a core solution is where a deviating coalition A could choose any allocation with a
capacity of (c|A|)/n instead of c, but their utilities would not be scaled down [21, 51]. For |A| = n,
both notions capture Pareto efficiency. However, for |A| = 1, they provide different interpretations
of proportionality—one based on utility and one based on capacity.

For divisible goods, the core coincides with the max Nash welfare (MNW) solution:®

LEmMA 3. IfeachU; is differentiable and concave, then any allocation that maximizes },; log(U;(z))
subject to z € Z constitutes a core solution®.

This lemma shows that the exact MNW solution is a core outcome. However, such a solution
can be irrational even when all inputs are rational [1], potentially precluding the existence of an
exact algorithm [18]. Therefore, we adopt an approximate notion of the core that still provides
meaningful guarantees:

DEFINITION 4 (APPROXIMATE CORE). Fore, & > 0, an allocation z € Z is an (€, §)-core outcome if
there exists no set of agents A C N and no allocation z’ € Z such that (|A|/n)U;(z") = (1+€)U;(z)+6
for alli € A with at least one strict inequality.

When € and é converge to zero asymptotically as n grows large, the allocation is said to be an
asymptotic core solution. The following lemma shows that an approximate MNW solution implies
an approximate core solution (see Appendix D.2 for the proof).

LEMMA 5. Lete, 8 > 0. Then, z € Z is an (€, &)-core outcome if, for any z’ € Z, we have:

1 Ui(z')
ZZU,-(Z)+5/(1+€) =ire W

4Subscript —i is used to refer to all agents other than agent i.

SSimilar lemmas appear in [17, 18] for other classes of utility functions. For completeness, we provide the proof of Lemma 3
in Appendix D.1.

%In this paper, all logarithms are natural.



2.3 Mechanism Design via Differential Privacy

In this subsection, we provide some background on differential privacy as a tool for designing
truthful mechanisms. Informally, a mechanism satisfies DP if its output is nearly equally likely to
be observed for any pair of adjacent inputs. Inputs are considered adjacent if they differ in only
one element. For allocation mechanisms, inputs correspond to agents’ reported utilities. Thus,
u,u’ € U™ are adjacent if they differ solely in the reported utility of a single agent. We now formally
define DP [15]:

DEFINITION 6 (DP). A randomized mechanism M is (€,8)-DP if, for any two adjacent inputs
u,u’ € U™ and any subset of outputs O C Z, it satisfies P[M(u) € O] < eP[M(u’) € O] +45.7

In this definition, € and § control the desired level of privacy and are typically provided as inputs to
the mechanism. In general, smaller values provide stronger privacy guarantees but result in higher
levels of noise being required to be injected, which can adversely affect the quality of the output. A
mechanism that satisfies (e, §)-DP is (e, §)-truthful:®

LeEMMA 7. Let M be (€, 6)-DP for some €,5 < 1. Then, M is (e, §)-truthful.

Proor. Consider any agent i, and let U; : Z +— [0, 1] be agent i’s utility parameterized according
to their true utility vector u;. Define the set S(¢) = {z | U;j(z) > t}. Since M is (e, §)-DP, for any
u = (u;,u_;) € U" and u; € U, the following inequality holds:

P[M(u) € S(t)] = e *P[M(uj,u_;) € S(¥)] - 6. (2)
Given the definition of S(t), we can rewrite (2) as:
P[U;(M(u)) > t] = e “P[Ui(M(uj, u_;)) > t] = 4. 3)

Given that E[X] = /01 P[X > t]dt for any random variable X € [0, 1], we obtain the following by
integrating both sides of (3):

E[Ui(M(w))] 2 e “E[U;(M(uj, u-1))] = 6 > (1 = e)E[Ui(M(uj, u-;))] = 6,
where the second inequality follows because e™© > 1 — €. O

We next define Rényi differential privacy (RDP) as a relaxation of DP [41]:

DEFINITION 8 (RDP). A randomized mechanism M is (a, €)-RDP with order a > 1 if for any two
adjacent inputs u,u’ € U", it satisfies: Do (M(u)||M(u’)) < €, where D, is the Rényi divergence of

order a defined as:
Du(PQ) = ——log (Ew [(%) ])

RDP provides strong guarantees regarding the concept of sequential composition. If M; and
M, are (a, €1)-RDP and (a, €3)-RDP, respectively, then the mechanism M, ; defined as M; »(x) =
(M (x), Mz(x)) is (@, € + €2)-RDP [41, Proposition 1]. This property enables straightforward
tracking of cumulative privacy loss for iterative mechanisms. If each iteration of an iterative
mechanism is (@, €)-RDP, then K iterations of the mechanism are (&, Ke)-RDP. We use this property
to analyze our proposed mechanism in Section 4.1.

A common tool for achieving RDP is the Gaussian mechanism. The Gaussian mechanism evaluates
a vector-valued function on the input and adds Gaussian noise independently to each coordinate of
the output. The noise magnitude is calibrated to the function’s ¢, sensitivity.
7Symmetry of adjacency relation implies: P[M () € O] > e €P[M(u') € O] — e €5 > e €P[M(u’) € O] - 6.
8When 8 = 0, McSherry and Talwar [39] show that mechanisms satisfying e-differential privacy make truth-telling an

(exp(€) — 1)-approximately dominant strategy. However, we are not aware of any existing result for the case § > 0.
Therefore, for completeness, we provide a proof of Lemma 7.



DEFINITION 9 (L2 SENSITIVITY). The ¢, sensitivity of f : U™ +— R™ is defined as:
Ap(f) = max If(w) = f(u)ll2.
adj uu’ € U"

Given this definition, the Gaussian mechanism is formally defined as follows.

DEFINITION 10 (GAUSSIAN MECHANISM). Let N'(p, X)) denote a multivariate normal distribution
with mean vector u and covariance matrix 3. For a > 1, € > 0, and function f : U" — R™ with an ¢,
sensitivity of Az (f), the Gaussian mechanism Mga’e is defined as:

ME, () £ N(f(w),0 L),
where I,, is the m X m identity matrix, and o® = al5(f)/2e.

Mf is (a, €)-RDP [41, Corollary 3]. Moreover, if a mechanism is («, €)-RDP, then it is (e +

Lo, €

log(1/6)/(a — 1),8)-DP for any 0 < § < 1 [41, Proposition 3].

3 ALGORITHM

In this section, we present PPGA (Algorithm 1), an algorithm that directly maximizes a smoothed
version of the NW objective in a DP manner. Our approach involves a transformation of the
objective into a separable form. Initially, we reframe the optimization problem of Lemma 3 into a
consensus problem. Next, we convert the consensus problem into a distributed optimization using
ADMM. Finally, to ensure truthfulness, we deploy the Gaussian mechanism.

3.1 Distributed Maximization of Nash Welfare

The NW objective function, }};log(U;(z)), poses two challenges. First, it is undefined when any
agent receives zero utility. Second, it is non-separable, as the shared variable z appears in all
terms. To address the first issue, we use a smooth version of the NW objective: };; log(U;(z) + v),
where v > 0 is a small smoothing parameter that vanishes asymptotically as the number of agents
increases. To tackle the second issue, we introduce local variables x; for each agent and a shared
global variable z:

Max. 0(x), 4)
s.t. z=x; Viel, ... n,

x;€Z Viel,...,n,

where 0(x) is defined for x = (x1,...,x,) as:
0(x) £ > 0:(x)) = ) log(Us(x:) +v).

This is referred to as the global variable consensus problem, as it requires all local variables to reach
agreement by being equal. Consensus transforms the additive objective, which does not split, into
a separable objective, which splits easily.

The partial augmented Lagrangian [28, 46] for (4) is defined as:

L(xzay) & ) Lz =y (0i66) =y (6= 2) = Sl - 213)
i i

where y; is a dual variable corresponding to the constraint z = x;, and p > 0 is a penalty parameter.
Note that, similar to 6, the function L is separable in x and splits into separate components L for



each agent i. We next apply ADMM to solve (4) in a distributed way through the following iterative
updates:

xl.(k) = argmax L (x;, 27, yi(k_l)) Viel,...,n, (5a)
x;€Z
2% = argmax LP (x®), z, y(k=V), (5b)
z
y.(k) = yl.(k_l) +p(xl.(k) ) Viel,...,n. (5¢)

In (5a), xi(k>’s can be computed independently for each agent i. Moreover, we can solve (5b)

exactly by setting the gradient dL” /dz = }; (yl.(k_l) + p(xl.(k) - z(k))) to zero, which leads to the

following closed-form solution:

1 1
* _ L k), 2 (k-1) 6
z " le np Z Y; . (6)

1

We can find an optimal solution to (4) through ADMM'’s iterative updates. However, this procedure
is not truthful. To address this limitation, we next incorporate DP into the process as a means of
achieving truthfulness.

3.2 DP for Maximizing Nash Welfare

To illustrate our proposed mechanism, it might be beneficial to interpret ADMM as an interactive

k) autonomously. Given z(*k~1)

(k)

i

process. At iteration k, each agent i calculates the local variable xl.(
and yl.(k_l), the value of xl.(k) depends solely on agent i’s own utility. With x;*’ and z(*¥) known,
each agent i independently calculates yi(k). These local variables are then submitted by agents,
aggregated by the algorithm, and used to compute the global variable z(¥). This resultant global
variable is broadcast back to the agents for the next iteration.

In the context of this interactive process, to ensure DP, it is imperative that the value of the
global variable remains insensitive to any individual local variable. To achieve this, we employ the
Gaussian mechanism, adding a normal random vector ¢ to z():

1 1 -
(k) _ (k) (k=1) (k)
2% == x"+ Y; +q\". (7)

According to (5¢c), we have:

k k— k
Zyi( ) = Z (yl.( D +p(xl.( ) —z(k))) . (8)

1

Replacing z*) from (7) into (8), we get 3, yl.(k) = —png'®), which is used to rewrite (7) as:

PALI % in(k) - q(k_l) + q(k). 9)
L
This update rule shows how z(*¥) can be calculated by adding Gaussian noise to the average of
xl.(k) ’s. The magnitude of the noise can be adjusted to achieve a desired DP guarantee.

Algorithm 1 shows the pseudocode of our proposed (differentially) private public-good allocation
mechanism, PPGA. The algorithm takes as parameters K, v, €, §, and a. K specifies the number of
iterations. v controls the smoothness of the objective function. €, §, and « together determine the
desired level of privacy—-and, consequently, the level of truthfulness. Specifically, € and § define the
level of DP, while « controls the variance of the Gaussian noise (see Theorem 12).



Algorithm 1: Private public-good allocation (PPGA)

1 Parameters: K € Z,v,¢,6 € (0,1), a > 1
2 € «— (1/K)(e —log(1/6)/(a - 1));

3 02 «— a/n€’;

4 g0,z O xO —9, Viei.. .,n

5 fork=1,...,K do
xl.(k) — argmaxxieZ(Lf(x,-,z(k‘l),yi(k_l))) Viel,...,n
7 g% ~ N(0,0%I,);
s | 29 e (1/m) Zix g - gkn;
9 yl.(k) — y;k_l) +p(x(k) -z viet,...,m

i

0)

10 end

11 Z <« (1/K) Zlk(:l PALR
12 2 17 (2);

13 Output: z

(k)

i

1)

At each iteration k, the optimal allocation x;" is computed for each agent i, given y}ki and

zk=1_This step can be executed in parallel for all agents. The algorithm then computes z*) as a
i(k) ’s. Given z(K) and xi(k), the value yi(k> is then computed for each agent for
the next iteration. After K iterations, the algorithm calculates z, the time average of the zK)’s and

returns z, the Euclidean projection of Z onto Z 2

noisy average of the x

3.3 Discussion

The integration of DP into ADMM inherently presents a trade-off between accuracy and privacy
(truthfulness). Achieving a more accurate MNW solution requires a higher number of iterations.
Fixing the amount of privacy loss per iteration, a higher number of iterations means a higher
cumulative privacy loss, resulting in a weaker privacy guarantee. On the other hand, achieving a
stronger privacy guarantee requires a lower cumulative privacy loss. Fixing the number of iterations,
a lower cumulative privacy loss means a higher level of noise per iteration, resulting in diminished
accuracy.
The expected value of the noise magnitude at each iteration of Algorithm 1 is:

Kma
n?(e —log(1/8)/(a = 1))
Assuming that m = o(+/n), if we choose K = @(n), € = @(1/log(n)), and § = ©(1/+/n), and set

a = 2log(1/8)/e + 1, then the expected noise magnitude at each iteration converges to zero as n
grows large—an essential property for achieving an asymptotic core outcome (see Section 4.2).

As a final remark, even though we described the algorithm as an interactive process in Section
3.2, we emphasize that our proposed algorithm is neither online nor interactive. All computations
are carried out by the algorithm itself, rather than by the agents. Agents submit their private utility
vectors and, at the end, observe a final allocation vector. As we show in Section 4, the algorithm
satisfies DP, ensuring that agents’ data remains private. Moreover, our mechanism guarantees
asymptotic truthfulness, meaning that as n grows, agents have no incentive to misreport their
utilities.

E [||q<’<>||g] = mo® =

9l'IZ (z) = argmingcz|lz - z’||§.



4 ANALYSIS

In this section, we first show that Algorithm 1 guarantees asymptotic truthfulness. We then
demonstrate that it produces an asymptotic core solution with high probability. Finally, we analyze
its computational complexity. All omitted proofs are provided in Appendix D.

4.1 Asymptotic Truthfulness

To analyze the end-to-end privacy guarantee of Algorithm 1, we separately analyze the DP guarantee
of each iteration. Leveraging the properties of the Gaussian mechanism, we show that each iteration
of the algorithm ensures («, €”)-RDP. With the additivity property of RDP [41, Proposition 1], after
K iterations, Algorithm 1 achieves (a, Ke’)-RDP. It then follows from [41, Proposition 3] that
Algorithm 1 is (¢, §)-DP.

LeEmMa 11. Algorithm 1 is (e, §)-DP.

Proor. Algorithm 1 consists of K iterations. At each iteration k, the private data is x®) while
the publicly released data is z(¥). Note that y(¥) is not publicly released, as each yl.(k) is privately
computed for each agent i. The z-update step at Line 8 of Algorithm 1 directly applies the Gaussian
mechanism to the function f(x) = % >, xi. Let x and x’ be two adjacent inputs that differ only in
their i element, i.e., x; # xlf . Then, we have:

1
1FG0) = Gz = ~ llxi = x -
Since x;, x] € [0,1]™ and [|x;|1, [|Ix] [l < 1, it follows that:
llxi = x{ 112 < (Ilxll3 + Ix]115) " < V. (10)

This implies A;(f) < V2/n. By [41, Corollary 3], each iteration k of the algorithm is (a, €’)-RDP.
Consequently, by [41, Proposition 1], the composition of the K iterations satisfies («, €)-RDP, where
€ = K¢’ = € —log(1/8)/(a — 1). Finally, by [41, Proposition 3], the K iterations of Algorithm 1
satisfy (e, §)-DP. It is important to note that computing Z after the K iterations and projecting it
onto Z are merely post-processing steps. Since DP is immune to post-processing [16, Proposition
2.1], these steps do not affect the privacy guarantees'®. O

We next establish our first technical result:
THEOREM 12. Algorithm 1 is asymptotically truthful.

ProoF. By Lemma 11, Algorithm 1 is (¢, §)-DP. It then follows directly from Lemma 7 that it
is also (e, 8)-truthful. Setting § = ©(1/+/n) and € = ©(1/log(n)), we conclude that Algorithm 1 is
asymptotically truthful. O

4.2 Asymptotic Core
Let x = (x1,...,xp) and y = (y1,...,¥n), and define w = (x,z,y) € W = (Z",R™,R™). Let

A

w2 (x(K) () () and define G 2 Ly, ..., I,). To show that Z is an approximate core
Y pp
Ui(z)

solution, we aim to derive an upper bound on max }; ABITE
zeZ t

i(z)
Ui (x;)+v°
distance between Z and each x. Finally, using the smoothness of U;’s and applying Lemma 5, we
conclude that 2z is an approximate core solution.

To this end, we proceed in three

steps. First, we bound max }}; where X = + Y x%)_ Second, we establish a bound on the
zeZ

191f M is (e, §)-DP, then applying any randomized mapping f to M(u) preserves the (e, §)-DP property.



Lemma 13. Let {w®} and {q©)} be sequences generated by Algorithm 1. Then, we have:

Ui(z) IR (k) _ T (k) , P
ZU(xl)+v_1+Kkz=;(Z z) q +2K Vze Z. (11)

The next lemma provides an upper bound on the distance between Z and any X;.

Lemma 14. Let {w®)} and {q'®)} be sequences generated by Algorithm 1. Let w* = (x*,z*,y") be
an optimal solution to (4), with x; = z" for alli. Then, we have:

V2n 2
+ — + —|l¥"l2. 12
UL (12)

1
K 2
R 2yn .
2 - G2l < ‘TF (kz 121 =2)Tq®) + 2

The right-hand side of (11) and (12) involves random variables—specifically, the sequences {1}
and {¢®}. The next lemma provides a bound on their tail behavior:

Lemma 15. Let {w®} and {q'®)} be sequences generated by K = ©(n) iterations of Algorithm 1.
Suppose €, §, and o are chosen such that mo? < 1. Then, forany z € Z and some constant C > 0, with
probability at least 1 — 1/n — 1/n™, we have:

L&
% 24

k=1

(0 — z)Tq(k) < Cymo. (13)

Next, we establish that the outcome of Algorithm 1 is an approximate core solution:

LEMMA 16. Suppose that m = o(+/n). Then, after K = ©(n) iterations, Algorithm 1 returns an
(€1, €2(1 + £1))-core outcome with probability at least 1 — 1/n — 1/n™, where:

£1=O( mlog(l/a)) . 82:0(4mlog(1/5) |

ne? ne?

Finally, we establish Algorithm 1’s asymptotic fairness.

THEOREM 17. Suppose that m = o(+/n). Then, after K = ©(n) iterations, the output of Algorithm 1
is an asymptotic core outcome with probability at least 1 — 1/n — 1/n™.

Proor. If we choose v = ©(1/+/n), 5 = ©(1/4/n),and € = ©(1/log(n)), and set a = 21log(1/5)/e+

1, then, by Lemma 16, Algorithm 1 returns an asymptotic core outcome. O

4.3 Computational Complexity

The main computation in each iteration k of Algorithm 1 is to compute xl.(k) for each agent i.
This step involves solving a convex program. Several methods exist for solving broad classes
of convex optimization problems with a number of operations that grow polynomially in the
problem dimensions and logarithmically in 1/&, where £ > 0 denotes the desired accuracy [44].
Typically, such accuracy guarantees are provided with respect to the objective function value.
For the subproblem in Line 6 of Algorithm 1, however, we require an accuracy guarantee on the
first-order optimality condition (see (18)). Fortunately, due to the smoothness of U;, such a guarantee
can still be achieved in polynomial time using first-order methods-such as the one proposed by Lu
and Mei [38].

LEMMA 18. For any x; € Z and z,y; € R™, a point x; € Z that satisfies the inequality
G = x) (VO (x)) —yi = p(x} —2)) < & (14)
can be computed in time O (mlog(m)+/(L + p)/Elog(1/£)), where L is VO;’s Lipschitz constant.



We now establish our final technical result.

THEOREM 19. Algorithm 1 achieves asymptotic truthfulness and computes an asymptotic core
solution with high probability in polynomial time.

Proor. Consistent with the proof of Theorem 17, let K = ©(n) and v = ©(1/+/n). Then, L <
(1+p)*

202

)?i(k) satisfying the following inequality for any z € Z:
o (k o (k k- o (k -
(2= 2T V0E) -y - p@ -2 < &

+ g = O(n). By Lemma 18, at each iteration k and for each agent i, we can compute a point

Suppose we modify Line 6 of Algorithm 1 by replacing xl.(k) with )?l.(k). This modification does
not affect the asymptotic truthfulness guarantee of the algorithm. However, it slightly alters the
algorithm’s approximation of the core. In particular, it can be verified that modified versions of
Lemma 13 and Lemma 14 continue to hold, with additive error terms of £ and 2\/n_§ /(4/pK) on the
right-hand sides of (11) and (12), respectively.

Choosing ¢ = ©(1/+/n) ensures that Lemma 16, and therefore Theorem 17, continue to hold for
the modified algorithm. Thus, the modified algorithm preserves the asymptotic guarantees of the
original, while achieving a total running time of O(n?7° log(n)mlog(m)). i

5 EXPERIMENTS

In this section, we aim to show that PPGA can be deployed in practice to solve large-scale public-
good allocation problems. To this end, we implement Algorithm 1 in Python using CVXPY, an
open-source Python-embedded modeling language for convex optimization problems [14]. PPGA
is highly parallelizable, particularly in the concurrent computation of x and y for all agents. We
leverage this feature in our implementation by distributing the computational workload across
multiple processes using Python’s multiprocessing package. The code for our implementation is
provided at https://github.com/uwaterloo-mast/PPGA.

To conduct experiments, we leverage real-world data from Pabulib.org, an open participatory
budgeting library [19]. Our experiments focus on 12 election instances, selected primarily based on
the size of their voter population and the average number of approved projects per voter!!. Each
instance involves a collection of projects with associated costs and a designated total budget. Voters
express their preferences for the projects by casting approval votes for one or more projects. We
summarize the key characteristics of these election instances in Appendix B, and full details of
each instance, such as project costs, are provided with our code (located in the final_data folder).

As just mentioned, the instances involve approval votes and indivisible projects. We utilized
these instances to derive new ones wherein agents have cardinal utilities, and fractional allocations
are deemed acceptable. Fractional budget allocations are inspired by the motivating examples in the
introduction and various related works [10, 17, 22, 23]. We transform approval votes into cardinal
utilities according to the cost-utility approach [19] using the following procedure: For each voter
i and project j, we set u;; = 0 if voter i does not approve project j, and u;; = 1 otherwise. This
ensures that voters’ utilities are proportional to the budget allocated to the projects they support!2.

In the concluding remarks of Section 3.2, we provide guidelines for the DP parameters to
guarantee our asymptotic properties. There are also established practical norms for acceptable e
and § values. Following these norms, we set € = c./log(n), § = cs/vn, and K = cxn, where c. = 1.5,

1We selected representative instances from about 60 instances that had at least 10k votes.

121et P; be the set of projects supported by voter i. Then, i’s utility is given by U;(z) = 2 jep; 2j, where z; < sj/c
represents the fraction of the total budget allocated to project j. This ensures that i’s utility is proportional to the budget
allocated to the projects they support.


https://github.com/uwaterloo-mast/PPGA
Pabulib.org

Inst. Core’s PS PPGA’s PS SD
Min (xn) Avg | Min (xn) Avg (+m)
1 90.7 0.27 111.9 0.27 | 0.00007
2 236.4 0.30 17.1 0.29 | 0.00016
3 235.5 0.18 191.1 0.18 | 0.00014
4 216.1 0.39 37.5 0.38 | 0.00023
5 15.0 0.33 14.3 0.33 | 0.00010
6 244.7 0.39 39.9 0.38 | 0.00030
7 11.0 0.29 11.1 0.29 | 0.00045
8 122.6 0.33 128.3 0.32 | 0.00008
9 163.5 0.34 168.0 0.34 | 0.00002
10 154.4 0.16 106.9 0.16 | 0.00034
11 519.8 0.45 513.4 0.45 | 0.00002
12 261.3 0.57 130.0 0.57 | 0.00003

Table 1. Proportionality score and statistical distance.

¢s = 0.3, and cx = 0.001. We further set « such that log(1/6)/(a — 1) = €/2. This way, values for
€ and § approximate 0.3 and 0.001, respectively, keeping the noise magnitude, E [||q(k) ||§], under
3e-4 for the majority of instances. We note that in our experiments, we set v = 0. The introduction
of v as a parameter was solely motivated by a technical requirement to ensure that 6; is a smooth
function. However, this smoothness condition has negligible practical significance.

We compare PPGA with the core!® using the following metrics:

e Social welfare (SW) for an allocation z is defined as % >.: Ui(z). SW serves as an indicator of
the overall satisfaction achieved collectively by all agents from the allocation.

e Proportionality score (PS) of voter i for an allocation z is defined as the ratio of i’s utility for

, #ﬁl},(z) If the PS value is > 1/n for all voters (or
equivalently, if the minimum value of PS across voters multiplied by n is > 1), then the allocation
is proportional (|A| = 1 in Defenision 2). We report both the minimum (multiplied by n) and the
average of PS values across all voters.

e Statistical distance (SD) between an allocation z and a core solution z* is measured by their total
variation distance, defined as %Hz —2"||1. Two allocations over m items are considered statistically
close if their total variation distance is a negligible function in m. To facilitate comparison, we
normalize the total variation distance by dividing it by m.

z to i’s maximum attainable utility, i.e.

For each metric, we report the average value over 50 runs.

Figure 1 illustrates the social welfare under PPGA normalized to that under the core solution,
while Table 1 summarizes proportionality scores and statistical distances across all election instances.
These results uncover several crucial insights. Firstly, the statistical distance between the budget
allocation under PPGA and the core solution remains consistently close to zero in all instances,
hovering below 0.00045 for all cases. Secondly, the observed discrepancy in social welfare values
between PPGA and the core solution consistently falls below 3% across all election instances.
Lastly, the minimum PS value Xn exceeds 1 for all instance, indicating that PPGA satisfies the
proportionality criteria for all instances. The average PS values tend to be slightly higher under the
core solution for some instances, but the discrepancy between the average PS values under PPGA

13We find the core by solving the convex optimization of Lemma 3 using Algorithm 1 without adding noise.
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Fig. 1. Social welfare of PPGA normalized to that of core (w/ 95% confidence band).

and the core remains below 4% in all instances. Collectively, these findings strongly signify the
high level of fairness achieved by PPGA.

Our empirical findings not only corroborate the theoretical results in Section 4 but also illustrate
that PPGA yields solutions that are statistically close to the core solution for all election instances.
We expect this result to hold for any instance with a large population and a linear utility model.
This expectation is based on our proof in Theorem 17, wherein we demonstrate that the distance
between x and Z asymptotically approaches zero with high probability. For any linear utility model,
it can be shown that the distance between x and z* also asymptotically approaches zero with high
probability. Consequently, the statistical distance between Z and z* is asymptotically negligible for
any linear utility model. For other concave utility models, the statistical distance between Z and z*
might be higher, depending on the curvature of the function. Nevertheless, one can demonstrate
that the difference in the value of the NW objective for z and z* asymptotically approaches zero
with high probability, implying similar results for PS.

6 RELATED WORKS

Fair resource allocation without money (also known as cake cutting) has been extensively studied
in the literature for private goods [47]. For public goods, the fair allocation problem has been studied
in various contexts, including fair public decision-making [11], multi-agent knapsack problems [20],
multi-winner elections [43], and participatory budgeting [45]. The truthful aggregation of agents’
preferences has also been explored in public decision-making [10, 22, 23, 27, 48]. However, the
settings in these works differ from ours, as they aim to maximize social welfare and focus on #
preferences'*, whereas our focus is on concave preferences and maximizing Nash welfare.

The work most closely related to this paper is that of Fain et al. [17]', which finds an approximate
core solution with high probability while achieving approximate truthfulness. However, due to its
reliance on several approximations, their approach fails to produce an asymptotic core solution. As
the number of agents increases, the approximation error for fairness (core) may grow. In contrast,
our approximation guarantee does not suffer from this issue. By combining the Gaussian mechanism
with ADMM to directly optimize the NW objective, our method ensures asymptotic truthfulness
and finds an asymptotic core solution with high probability.

Differentially private convex programming has been utilized in recent years to allocate
private goods [12, 30, 31, 34, 35]. These methods often employ the dual ascent technique as a key
tool [7]. The dual ascent method involves a sequence of two updates: the primal update, which

14An agent’s disutility for an allocation is equal to the £ distance between that allocation and the agent’s most preferred
allocation.

I5Their notion of the core is based on capacity, where a blocking coalition receives a proportional share of the capacity
rather than a proportional share of utility (see Defenision 2).



optimizes the Lagrangian while fixing the dual variable, and the dual update, which takes a gradient
ascent step to update the dual variable given the optimized primal variable. However, the dual
ascent method cannot be used for maximizing the NW objective, because, as we show in Section 3,
the Lagrangian for the convex program is an affine function of some components of the primal
variable. This causes the primal update to fail, as the dual problem is unbounded below for most
values of the dual variable [7]. We avoid this by optimizing the augmented Lagrangian instead of
the Lagrangian.

Differentially private ADMM methods have also been extensively studied [32, 33, 36, 52, 56, 57].
Although related, our work differentiates itself from these works in several aspects. Firstly, while
previous studies focus on the convergence rate of the objective function, we study the convergence
of a primal variable to an approximate core solution. To the best of our knowledge, our work is
first to prove an asymptotic, game-theoretic property for a primal variable within differentially
private ADMM. Secondly, unlike prior work that introduces noise to the local variables, PPGA adds
noise to the global variable (as detailed in Section 3). Finally, many studies on differentially private
ADMM rely on a restrictive assumption regarding the strong convexity of the objective function,
which does not hold for the NW objective.

7 CONCLUSION

In this paper, we introduce PPGA, a mechanism designed for the fair and truthful allocation of
divisible public goods. PPGA achieves fairness by directly maximizing the NW objective and
ensures truthfulness by deploying the Gaussian mechanism from differential privacy. We showed
that PPGA is asymptotically truthful and finds an asymptotic core solution with high probability.
By conducting experiments using real-world data from participatory budgeting elections, we
showcased the practical applicability of PPGA.
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A NOTATIONS

Notation Description

n Number of agents
Number of public items
Sj Size of item j
s Size vector, i.e., (1,...,5m)
c Total capacity
zj Fraction of the total capacity that is allocated to item j
z Allocation variable, i.e., (z1,...,2zm)
Zz Set of all feasible allocations, i.e., {z € [0,1]™ | ||z|]|1 £ 1, ¢z < s}
Ui(z) Agent i’s utility function for allocation z
u; Agent i’s utility vector, i.e., parameters of U;: (uj1, . .., u;q)
U Set [0,1]¢
u Utility vectors for all agents, i.e., (u1,...,uy)
U_j Utility vector of all agents except agent i, i.e., (U1, ..., Ui—1, Uit+1, - - -, Un)
M(u) Randomized mechanism that maps u € U" to probability distribution over Z
Xi Feasible allocation of agent i
x Vector of allocations, i.e., (x1,...,xn) € Z"

0; (xi) Smoothed logarithm of agent i’s utility, i.e., log(U;(x;) + €)
0(x) Summation of 0;’s: Y; 0;(x;)

L Lipschitz parameter of U;(z)’s
€ Multiplicative approximation factor for truthfulness, core, and DP
1) Additive approximation factor for truthfulness, core, and DP
a Rényi divergence parameter
N(u,2)  Multivariate normal distribution with mean vector y and covariance matrix %
K Total number of iterations in Algorithm 1
2(k) Global allocation variable at iteration k, i.e., (zl(lk ), el z.(,];))
xi(k) Agent i’s local allocation variable at iteration k, i.e., (xl.(lk), .. ,xfr]:l))
x(K) Vector of local allocations at iteration k, i.e., (xfk), el x,(lk))
yl.(k) Dual variable for z = x; constraint at iteration k, i.e., (yl.(lk), e yfjfl))
y(k) Vector of dual variables, i.e., (yl(k), el y,(,k))
q(k) Multivariate Gaussian noise added to z(K) at iteration k
o? Variance of added noise to each dimension of z
p Penalty parameter for the augmented Lagrangian
Lf Agent i’s partial augmented Lagrangian with parameter p
Lr Summation of partial augmented Lagrangian functions, i.e., sumiLf
n Regularization parameter for the linearized augmented Lagrangian
> Agent i’s linearized partial augmented Lagrangian with parameters p and 7

i

IIz(z)  Euclidean projection of z onto Z, i.e., argmin, ¢ 7|z - z'||§
Z Time average of 20 e, (1/K) ZIk(:l z(k)
z Euclidean projection of Z onto Z, i.e., I1(2)

Table . List of notations



B ELECTION INSTANCES

Inst. Election # Voters #Proj. Budget Avg. # votes

(n) (m) (c) per voter

1 Wroclaw’17 62,529 50 4,000,000 1.8
2 Warszawa’20 Praga Poludnie 14,897 134 5,900,907 9.1
3 Katowice’21 36,370 47 3,003,438 1.5
4 Warszawa’21 Mokotow 12,933 98 7,147,577 9.7
5 Wroclaw’16 Rejon NR 10-750 12,664 13 750,000 1

6 Warszawa’23 Mokotow 11,067 81 8,697,250 9.1
7 Wroclaw’16 Rejon NR 12-250 10,711 15 650,000 1

8 Wroclaw’16 67,103 52 4,500,000 1.8
9 Warszawa’22 81,234 129 28,072,528 7.9
10 Gdansk’20 30,237 28 3,600,000 1

11 Warszawa’21 95,899 106 24,933,409 8.3
12 Warszawa’20 86,721 101 24,933,409 7.2

Table 3. Characteristics of election instances.

C SUPPLEMENTARY CLAIMS
Cram 20. Let f : D — R be strictly positive and concave. Then, F(x) = ﬁ is convex.
Proor. First, not that since f is strictly positive, F is well-defined over D. To show that F is
convex, we need to verify that for any x,x” € D and any A € [0, 1]:
F(Ax + (1= A)x") < AF(x) + (1 = D)F(x").
Since f is concave, it satisfies f(Ax + (1 —A)x’) = Af(x) + (1 - A)f(x) for any A > 0. Because f is

strictly positive, all terms are positive, and taking reciprocals reverses the inequality:

! < ! <At (1= D)
fOx+ (1 =Dx") = Af () +(A-Df(x) ~ fx) &)
where the final inequality follows from Jensen’s inequality applied to the convex function ¢ — 1/t
on the positive reals. Thus, F(x) is convex. O

Cram 21. If f : D +— R is concave and L-Lipschitz continuous, then |Vf|, < L. Also, if f is
concave and ||V ||, < L, then f is L-Lipschitz continuous.

Proor. First, we show that if f is concave and L-Lipschitz continuous, then ||Vf||; < L. Since f
is concave, for all x, x’ € D, we have:

F(xX) < f(x)+ V() (x' - x).
Set x’ = x — 5—”VVJJ:((;‘_))“Z for some 0 < § < D, where D = SUP, e |l = %'||,. Then, we have:

SIVF()l2 < f(x) = f(x) < Lllx - x|z = LS,
where the last inequality is due to Lipschitz continuity of f. Dividing both sides by § yields the
desired result.
Next, we show that if f is concave and ||V f||, < L, then f is L-Lipschitz continuous. This follows
directly from concavity and boundedness of the gradient:

&) = f(0) < V)T =x) < IVF)ll2llx” = xllz < Llix" = ]l



By switching x and x’ in the above inequality, we can show:
f&) = f(x") < Lllx = x|,

for the same x and x’. m]

Cramm 22. Let f : D +— R be concave, f-smooth, and bounded between 0 and 1. Suppose that D is a
bounded convex set, such that sup, .. o |x —x’||; < D < co. Then, f is L-Lipschitz, with L < £ + ﬁTD.

Proor. Given that f is concave and f-smooth, for all x,x” € D, we have:

£+ VI ) = f) < Dl =2l

Setting x’ =x+ 9 Hj‘(;)l)l , where 0 < § < D, we have:

SIVFGOIL < ) - fGo + bo <14 052
Dividing by § > 0 and substituting § = D gives us the desired upper bound on V f(x). .

Cram 23. Let f : D +— R be concave and bounded between 0 and 1. Suppose that D is a
bounded convex set, such that sup, . cqp l|x — x'l[2 < D < oo If f is ﬂ smooth then for v >0,

h(x) =log(f(x) +v) has L-Lipschitz gradient (i.e., is smooth), with L < M B vhere M = 1 5+5 ﬁD

Proor. For any x,x’ € D, we have:

Vix) V)
f)+v f&)+o

IVh(x) = VR(x)|l2 = ”

2

) | Vf(x) - Vf(x)
_Wﬂﬂ+v_f&0+JVﬂﬂ+ for+o |,

L 19FG) — VFG) o
@+ Fay eI Ol =0
) - f)] L IV - VRl
= oG o @l =

M? B
—5 Il = x[lz + =l = x|l
U v

M?
(—2 + E) llx = x|z,
U U

where the last inequality follows from f’s M-Lipschitz continuity (Claim 22) and f-smoothness. O

IA

D OMITTED PROOFS
D.1 Proof of Lemma 3
Proor. By concavity of Uj, for all z, 2" € Z, we have:
Ui(z') - Ui(2) < VU;(2)" (' - 2). (15)

Let z* be an MNW solution. The first-order optimality condition for z* requires that the following
inequality holds for all z’ € Z:

VU;(z9)T by (15) Ui(z)
Z,-:U()( —z)<o=>-ZU(Z) (16)




For contradiction, suppose that z* is not a core outcome. Then, there exists a set of agents A and
an allocation z’ such that (|A|/n)U;(z") > U;(z*), and at least one inequality is tight. This implies
(1/n) X;ea Ui(2') /Ui (z*) > 1, which contradicts (16). m}

D.2 Proof of Lemma5s

Proor. Suppose, for contradiction, that z is not a core solution. Then, there must exist a set A
and some 2z’ € Z such that (|A|/n)U;(z") = (1 + €)U;(z) + 6 for all i € A, with at least one strict
inequality. This implies: (1/n) >};c4 Ui(2")/(Ui(z) + 6/(1 + €)) > 1 + €, contradicting (1). O

D.3 Proof of Lemma 13

To prove Lemma 13, we first present the following lemma, which relates wk) to any w € Wz,
where Wz = {(x,z,y) € W |x = Gz}:

LemMa 24. Let {w®} and {¢©)} be sequences produced by Algorithm 1. Then, the following
inequality holds for any w € Wy :

(x—x"NTVH(x ") 4+ T (x B — GzH)) < p(zF) - 2)Tq® (17)
# 5 (e = 25D =l = =)+ o (= Iy -y ).
Proor. The first-order optimality conditions corresponding to the update step in Line 6 of
Algorithm 1 imply the following inequality for alli and z € Z.
(z =5 DT (V0 () =y = p(xF - 257)) <0, (18)
Let 70 £ y(k=1D 4 5(x(K) — Gz(k=1))_ Then, we can rewrite (18) as:
(z=x)(V0:(x") - ) <.
Summing this over all i, for any z € Z and x = Gz, we have:
(x = xFN V(xR — (x — xFNH TR <o, (19)

Next, given (7), Line 8 of Algorithm 1 implies that 2z is a solution to:

imi (k=T (k) k P o) k)2
maximize Z (_(Yi )V (x™ -z + g - E“xi —z+q )”2) ]
1

The first-order optimality conditions for this optimization imply:

(z—z"NHT (Z (yi(kfl) +p(xi(k) -z 4 q(k)))) <0 forallzeR™ (20)

Given the definition of 7¥), we can rewrite (20) for all z € R™ as:
(z =207 (Z 7 = np(z® - 270 + npq(k)) <0 =
i
~(k -
(z - 20T Z yl.( ) < np(z — 2N (k) _ k=1 _ np(z - z(k))Tq(k). (21)
i

Next, given Line 9 of Algorithm 1, for all y € R™" we have:
x®) =Gz 0 = () =1y =
(r = 7N =629 = (r = 7T (™ =y p. (22)



To put everything together, we use the following identity:

(x®) _ Gzy‘@»+(z_zw5Tzzyw>+(y FONT (x0) _ G700y = T (x(®) _ Gz (R)y,

With this, we can combine (19)-(22) to get the following inequality for any w = Wy:
(x = xFNTVI(x )4y T (xF) — G20y < np(z'F) - 2)Tg®) (23)
+np(z =2 )T (@0 =20+ (r = 7T =y ) /p.
Next, we focus on the right-hand side of (23). Given the following identity:
2(a=b)T(c~d)=lla=dll; - lla—cll3 +1lb - cll; = IIb - dll3,

we have:
2(z = 20NT(2® — 267Dy = 1z = 2E=D 2 1z = 202 — ||z — Zk=1)2 (24)
2(y = 7T =y E 0y = Iy =y EDIE =y — y O )2 — |7 ®) - |3
+[7% -y ®2. (25)

Given the definition of %) and Line 9 of Algorithm 1, we have:
P =yl = lp (e = G2*D) = (B =y

Iy
= 2 ®) = G2k — 1) 4 g2
= np?[2® — 2D 2, (26)
Substituting (24)-(26) into (23) gives (17). O

We are now ready to prove Lemma 13:

PRrOOF. We start by rewriting (x — x*~)Tvg(x*~1)) as:

(k) (k)
(x = x"HTvo(x ) = Z G =) VUi, ).
i Ui(xi(k)) +v

Since U;(x) is concave, for any i and for any x, x’ € Z, we have:
Ui(x') = Ui(x) < (x" = %) VU (). (27)

Therefore, (17) implies:

UA .
S IEIEY 110 G2 0) < ntmp(e®) - 2)7q W (28)
T Ui(x;") +v

np _ 1 -
+ 22 Iz = 2502 = 2 = 200 + 5= (I =y VIS = lly = Y O3)
D
Next, since (28) holds for any w € W, it in particular holds when y = 0,,,, which yields:

Ui
-El DY 14 p(ae) —2)Tg (29)
U(x( ))+U

1
k- k k- k
#5 (12 =251 = 2 = 2] + 2 (1 - 10 1g).



For any z € Z, we have ||z||2 < ||z||? < 1. Given this inequality, by summing (29) over k = 1 to K
and dividing by K, we obtain the following for any z € Z:

1 1 & Ui(z) +v p u p
=Y -y —— <1+ )y (20 - z)Tq(k) + —. (30)
n Zl: K ; Ui(x,»(k)) + K ; 2K

Since U;j(x;) + v is strictly positive and concave, the function 1/(U;(x;)v) is convex (Claim 20). As a
result, by Jensen’s inequality, it follows that for any z € Z, we have:

1 i Ui(z) +v S Ui(z) +v _Ui(z) +v S Ui(2)
1% k = T Uz = U(x )
KU o v (22K, x0) 4o U@ +v U +o

Given the last inequality, (30) implies (11). O

D.4 Proof of Lemma 14

Proor. First, we note that, since the objective function of (4) is continuous on a compact set, the
problem attains its bounded global maximum. Therefore, there exist optimal solutions z* € Z and
x* € Z" such that x; = z* for all i, which achieve this maximum value [49, Theorem 4.16].
Second, strong duality holds for (4). This follows from three facts: (i) the objective function is concave,
(ii) the constraints are affine, and (iii) Slater’s condition is satisfied, i.e., there exists a strictly feasible
point that lies in the relative interior of Z and satisfies all constraints (e.g., x; = z = s/(c||s||) for
all i). As a result, the dual optimal value is bounded and attained, and there exist optimal Lagrange
multipliers y* that achieves this value [8].

Next, Since z* is a solution to (4), the first-order optimality conditions require 3’; y; = 0. Therefore,
by setting w = w* in (17), we have:

(x* =xNTVO(x®)) + 1y Tx®) < np(zF) - 2)Tg® (31)
# 52 (1 =2Vl =2 ) + o (1 =y ).
Since x* is a solution to (4), the first-order optimality conditions require:
(x®) —x)T(VO(x*) — ") < 0. (32)
Therefore, by summing (31) and (32), we obtain:
(x*=x"NT(vo(x*) = vO(x*)) < np(z® - z*)Tq(k)
# 52 (1 =2V =2 ) ¢ o (1 -y Iy -yl 69
Since 6(x) is concave, we have (x — x)T(V0(x) — VO(x’)) < 0. Therefore, (33) implies:
I =y I3 = Iy = I < mp? (229 = 2)Tg™® 4 12" = 25D - 2 - 293).

Given that ||z*||2 < 1, by summing this last inequality over k = 1 to K, we get:

K
Iy % =y 15 < 2np® 3 (=% = 2)7q™ +np® + Iy I3 (34)
k=1



Next, we have:
oK (x = G2)II5 =y ®1I2 = Iy - y* +y*|I12

<2y 112 +2lly ™) -y |12

K
<anp? 3 (2 = 2)7q™ + 2np? +ally°
k=1
which implies:

1

2
V2n 2 .,
+—+ —ly"ll2- (35)
pK

K
24/n .
I - Gzll. < TI (kz 120 = 2)Tq®) + 2

The Euclidean projection onto Z is contractive. Therefore, since %, Z € Z, we have:
% = Gzll2 =[x = GILz ()2 < [Ix = GZ][..
Given this inequality, (35) implies (12). )

D.5 Proof of Lemma 15

Proor. For any z € Z, we have:

1
&) _ TR = (= (k) 4 gk _ glk=1) _ AT (k)
=201 =1G 2,0 g =g =2
1 k T
<16 25T @1+ 11g @+ 1947 g™+ 127¢ ™|

1 k T
<l= 255 lellg ™l + g ® 15 +1g% g M 1+ llzllllg© 1z

T
< 2llg® 2 + g™ 115 + 197" g™ (36)
Here, the first inequality follows from the triangle inequality. The second inequality follows from

the Cauchy-Schwarz inequality and the fact that || - ||, < || - ||1—that is, for any vectors a and
b in an inner product space, |a’b| < |lall2]|bllz < |lall1]|b]|2. The third inequality holds because

% > xi(k) € Z, and for any z € Z, we have ||z||2 < ||z||; < 1. Finally, for the last term in (36), we
apply Young’s inequality to obtain:
k-0T ko o Ly k- Lk
g g ™1 < Sllg" VI + Sllg™IE
Substituting the last inequality into (36) and summing over k, we have:

K K
1> G =2g®1< > 1* - 2)7q®)
k=1 k=1

K
<2 (lg®13+llg® ). (37)

k=1
We next focus on tail behavior of |lq(¥) |2 and llg'®)||; separately. Starting with [|¢'¥)||2, note that
each qj.k) ~ N (0, 6?) is a sub-Gaussian random variable!®. Therefore, by [55, Lemma 2.7.6], each

16 A real-valued random variable X is called sub-Gaussian if there exists a constant & > 0 such that for all + € R,
Efexp(z(X - E[X]))] < exp((£?0?)/2).



(k))z

(q; w2

is sub-exponential'’, with ]E[(qj =¢? and

k
(g5 = o*lly, < Cio?,

where C; is a constant, and || X||y, = inf{t > 0| E[exp(|X|/t)] < 2} denotes the sub-exponential

norm of a real-valued random variable X. Since qﬁk)’s are iid. across all k and j, for any t > 0 and
some constant c1, Bernstein’s inequality [55, Theorem 2.8.1] implies:

K
D NIl - Kmo? > ¢
k=1

2t

< exp (—01 min (— )) . (38)

P ,—
Kmo*’ o2

Next, by [55, Theorem 3.1.1 and Lemma 2.6.8], ||g‘¥)||, is a sub-Gaussian random variable with
131 ~Elg® e, < cac?,
2

where C; is a constant, and [|X||y, = inf{t > 0 | Elexp(X?/t?)] < 2} denotes the sub-Gaussian
norm of a real-valued random variable X. Since ¢*)’s are independent, by the general Hoeffding’s
inequality [55, Theorem 2.6.2], for any ¢t > 0 and some constant ¢,, we have:

X cot?
k. _ [ ) ] _&
kE_l (Ilq lo —E|llg" I ) > tl < exp( Kol

P

We next provide an upper bound on E [Ilq(k) ||2]. Consider the inequality vu < (1 +u)/2 which
holds for any u > 0. By setting u = #Hq(k) I3, we get:

gl _ 1+ (1/ma®) )12
N 2 ’

Taking expectations on both sides of the inequality, we obtain:

1+1
B [Ig®1l.| < Vi == = vmo.

Therefore, we have:

P < exp( cztz) (39)
€ex - ).
= &xp Ko*

K
2 lg® e ~Kvmo > ¢
k=1

<P li (19®12 =2 [1g®11]) > ¢

k=1

Given (37)-(39) and the union bound, for ¢’ = 4t + 2Kmo? + 2K+/mo, we have:

K K
PUY R =27q% > ¢ <2 (Ilg™ 15 +11g® 1) = ¢
k=1 k=1
K K
<P Z IIq(k)II§ —Kmo® > t|+P Z ||q(k)||2 —KVmo >t
k=1 k=1

) 2t cot?
< exp [ —c; min Xmot oZ +exp(—@).

17A real-valued random variable X is called sub-exponential if there exist constants v, @ > 0 such that for all || < 1/a,
E[exp(¢(X - E[X]))] < exp((#21?)/2).



For some constant c, setting ¢t = ¢cVKmo? logl/ ?(n) in the previous inequality implies that the
following inequality holds with probability at least 1 — 1/n — 1/n™ for any z € Z.

1 i (k) T (k) m ylog"*(n) 24 ovm
- (2" = 2)" ¢""| < deYVmo® ——— + 2mo” + 2Vmo. (40)
K VK
k=1
Since mo? < 1, (40) implies (13). ]

D.6 Proof of Lemma 16

Proor. Let {w®)} and {¢'®)} be sequences generated by Algorithm 1. Let w* = (x*,z*,y*) be a
solution to (4). Define y; . and z as:

N Ui(z) +v
- max and z = argmax —_—
Ymax = |Y1]| ;quz Z Ui(xi) +o

Further, define ¢; and &, as:

(=9 - »Tq®|+ L,

i
Nl
MN

and

+ 0,

_ 2L\n
K

p K Ymax

K 1/2
Z |(zF) —Z*)Tq(k)|) + L? + 2Lynm
k=1

where L = (1+ ﬁ)/\/z By Lemma 13 and the definition of z, for any z € Z, we have:

Ui(z) +v Ui(z) +v
ZU(XI)+U__ZU(X1)+U T+e. (41)

Each U is concave, f-smooth, and bounded between 0 and 1. The domain Z is also bounded (see
(10)). Therefore, each U; is L-Lipschitz (Claim 22). Given this, and the fact that ||%; — Z||, < ||x—GZ||,
for any i, Lemma 14 implies the following:

Ui(f) < Ul(ﬁ) +& -0 Vi. (42)

Combining (41) and (42), for any z € Z, we have:

Ui(2) Ui(z) +v
ZU(z)+€2_ ZU(z)+£2 1+é. (43)

Given (43), Lemma 5 implies that Z is an (1, £2(1 + €;))-core outcome. Assuming K = ©(n), and
setting & = 21log(1/9)/e + 1, we have:

2 Kma mlog(1/d)
M= 2 (e —log(1/8) (@ - 1)) O( ne? )

Since m = o(+/n), if we set v = ®(1/+/n) and choose €, § > 0 such that mo? < 1, then we can apply
Lemma 15 to establish the lemma. m}




D.7 Proof of Lemma 18

Proor. For any z,y; € R™, let h(x;) = —Lf (x, 2, ¥i)- To prove the lemma, we rely on [38,
Theorem 4]. To apply this theorem, the following four conditions must hold: (1) h is convex; (2) the
diameter of Z is bounded; (3) there exists a point in the interior of Z; and (4) h(x;) has a Lipschitz
continuous gradient over Z. Condition (1) is straightforward to verify. Condition (2) is established
in (10). For (3), we note that a point such as z = s/(c||s||) lies in the relative interior of Z. Regarding
(4), by Claim 23, 6; has an L-Lipschitz continuous gradient over Z with L < A;’—; + g where M = %
It then follows from the definition of A that it has an (L + p)-Lipschitz continuous gradient over Z.
Since these four conditions are satisfied, by [38, Theorem 4], we can find a point x; € Z and a
residual v € R™ such that:

v€d(h(x))+1z(x))), and o]y < g (44)

where 1 denotes the indicator function'® of the set S, and 9f denotes the subdifferential'® of the
convex function f. This guarantee can be achieved using at most

0 (\ /L% 1og(1/g)) (45)

projections onto Z, a convergence rate that is optimal up to a logarithmic factor.

Next, we observe that since Z has nonempty interior, the subdifferential of the sum of convex
functions equals the sum of their subdifferentials [3, Theorem 3.40]. Therefore, we can rewrite (44)
as:

v € Vh(x]) +91Z(x}), and o2 < g (46)
It is also straightforward to verify that 91 7 (x]) = Nz(x}), where Nz denotes the normal cone of
Z, defined as: Ng(x) = {y € R™ : yT (u — x) < 0,Vu € S} [50]. Using this identity, we can further
rewrite (46) as:

0—Vh(x}) € Nz(x{), and ||z < g (47)

Finally, since sup, ¢ 7 [|x — x’||2 < V2 < 2, we can apply the Cauchy-Schwarz inequality to
conclude that, for any z € Z, the following holds.

~(z=x))"Vh(x) < =(z = x{")To0 < [lollzllz - x{|1> < §<z> 3 (48)
Given that —Vh(x]) = V0;(x") — yi — p(x] — 2), it follows that (48) implies (14).
It is well-known that projecting a vector in R™ onto Z can be done in O(mlog(m)) time using a
sorting-based algorithm (e.g., see [29, Algorithm 5.1]). Consequently, a point x} satisfying (14) can

be computed in total time
L
0 (mlog(m) - ’;p 1og(1/§)) .

181 (x) equals 0 if x € S, and +co otherwise.
Pof(x) 2 {ueR™: f(x') = f(x) +ul (x' — x),VYx’ € dom(f)}
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