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Abstract

This paper develops a new parameter-free restarted method, namely RPF-SFISTA, and
a new parameter-free aggressive regularization method, namely A-REG, for solving strongly
convex and convex composite optimization problems, respectively. RPF-SFISTA has the ma-
jor advantage that it requires no knowledge of both the strong convexity parameter of the
entire composite objective and the Lipschitz constant of the gradient. Unlike several other
restarted first-order methods which restart an accelerated composite gradient (ACG) method
after a predetermined number of ACG iterations have been performed, RPF-SFISTA checks
a key inequality at each of iterations to determine when to restart. Extensive computational
experiments show that RPF-SFISTA is roughly 3 to 15 times faster than other state-of-the-art
restarted methods on four important classes of problems. The A-REG method, developed for
convex composite optimization, solves each of its strongly convex regularized subproblems ac-
cording to a stationarity criterion by using the RPF-SFISTA method with a possibly aggressive
choice of initial strong convexity estimate. This scheme is thus more aggressive than several
other regularization methods which solve their subproblems by running a standard ACG method
for a predetermined number of iterations.

1 Introduction

This paper presents present new restarted and aggressive parameter-free first-order methods for
solving the composite optimization problem

ϕ∗ := min{ϕ(z) := f(z) + h(z)}, (1)

where ϕ is a function that is assumed to be either convex or µ̄ strongly convex, h : ℜn → (−∞,∞]
is a closed proper convex function, and f : ℜn → ℜ is a real-valued differentiable convex function
whose gradient is L̄–Lipschitz continuous.

The main focus of this paper is to propose a computationally efficient restarted parameter-
free method, namely RPF-SFISTA, for solving strongly convex composite optimization (SCCO)
problems. At each iteration, RPF-SFISTA proceeds as follows: it first calls a strongly convex
accelerated composite gradient method (S-ACG) developed in [38] with an (usually aggressive)
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estimate µ of the strong convexity parameter µ̄ until either a desired stationary point is obtained or
a certain key inequality is violated; in the latter case S-ACG is invoked again with strong convexity
estimate set to µ/2 and initial point set to the best point obtained in the previous S-ACG call.
Using this scheme, RPF-SFISTA restarts a logarithmic number of times and it achieves an iteration
complexity of Õ

(√
L̄/µ̄

)
. RPF-SFISTA’s superior numerical performance is also displayed through

extensive computational experiments.
This paper also proposes a dynamic aggressive regularization method, namely A-REG, for solv-

ing convex composite optimization (CCO) problems. A-REG solves a sequence of strongly convex
regularized subproblems using RPF-SFISTA with an aggressive choice of strong convexity estimate.
Under the assumption of bounded sublevel sets, A-REG achieves a complexity of Õ

(√
L̄/ϵ

)
, which

is optimal up to logarithmic terms.
Literature review. We divide our discussion here into methods that were designed to solve

SCCO and CCO problems, respectively.
Methods for SCCO : Methods that restart accelerated composite gradient (ACG) methods for

solving SCCO problems have been proposed as early as 2008 in [15] (see also [16] for the published
version) while methods that restart strongly convex variants of accelerated composite gradient
(S-ACG) methods have been proposed as early as 2013 in [32]. Table 1 (resp. Table 2) below
summarizes the differences between the existing restarted ACG (resp. S-ACG) methods.

We now briefly comment on each of the columns in both tables. The “Universality” column
describes which parameters each method is universal with respect to. Methods that consider the
setting where f is µ̄f -strongly convex (resp. L̄-smooth) and require no knowledge of µ̄f (resp. L̄)
are said to be µ̄f -universal (resp. L̄-universal). Likewise, methods that consider the setting where
the entire composite function ϕ is assumed to be µ̄-strongly convex and that require no knowledge
of µ̄ are said to be µ̄-universal. If an entry is marked with ∗, then it means that the method is not
universal with respect to that parameter. The “Composite Objective” column displays whether the
method considers a general composite objective as in (1) or the special case where h is the indicator
function of a closed convex set (i.e., h = δC). The “Stationarity” column indicates whether the
method terminates according to a checkable stationarity termination criterion or according to a
condition that involves the optimal value of (1) (which is usually unknown). The “Convergence
Proof” column presents whether a method has any convergence guarantees or not. Finally, the
“Restart Condition” column indicates whether the ACG (or S-ACG) restarts when a checkable
condition is satisfied at some iteration or after a predetermined number of iterations is performed.

It has been observed in practice that restarted S-ACG methods tend to perform much better
than restarted ACG methods. Also, methods that restart based on a checkable condition tend
to have better computational performance than methods that restart based on a predetermined
number of iterations.

Name Universality Composite Objective Stationarity Convergence Proof Restart Condition

[15, 16] (∗, ∗) No (h = δC) No Yes Predetermined

Sync||FOM (2022) [35] (µ̄f , L̄) No (h = δC) No Yes Checkable

[1, 2, 3, 4, 10, 36] (µ̄, ∗) Yes Yes Yes Predetermined

Free-FISTA (2023) [5] (µ̄, L̄) Yes Yes Yes Predetermined

Table 1: Comparison of restarted ACG methods for SCCO.

This paragraph solely focuses on describing strongly convex variants of FISTA or S-ACG meth-
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ods that have been previously developed. Methods for SCCO problems that use S-ACG and that
are parameter-dependent and require knowledge of the strong convexity parameter underlying the
objective function have been proposed in the following works [7, 9, 11, 12, 27, 29]. Universal
restarted methods, including the RPF-SFISTA method in this paper, have also been proposed (see
also [17, 23, 25, 32]). Table 2 below highlights the differences between each of the restarted S-ACG
methods.

Name Universality Composite Objective Stationarity Convergence Proof Restart Condition

[25, 32] (µ̄f , L̄) Yes Yes Yes Checkable

GR-FISTA (2022) [23] (µ̄f , ∗) Yes No No Checkable

SCAR (2023) [17] (µ̄f , L̄) No Yes Yes Checkable

RPF-SFISTA (µ̄, L̄) Yes Yes Yes Checkable

Table 2: Comparison of RPF-SFISTA with other restarted S-ACG methods for SCCO.

As seen from Table 2, RPF-SFISTA is the only parameter-free µ̄-universal method that restarts
a S-ACG method based on a checkable condition. It is observed in practice that methods that restart
a S-ACG method based on a checkable condition tend to perform better in practice. We display
through extensive computational experiments that RPF-SFISTA is roughly three to fifteen times
faster than other state-of-the-art restarted methods on four important classes of problems. It is also
worth mentioning that µ̄ can be much larger than µ̄f + µ̄h. Hence, methods that are µ̄-universal
have the advantage that their complexities tend to be better than those of µ̄f and µ̄h-universal
methods and nonuniversal methods which depend on µ̄f + µ̄h.

Methods for CCO : Many direct methods based on proximal gradient, ACG, or FISTA methods
have been developed to solve CCO problems (see [6, 18, 19, 21, 22, 26, 31, 32, 37]). Heuristic restart
schemes that restart FISTA and that achieve good practical performance were also further proposed
by O’Donoghue and Candès in [33]. Convergence proofs of their generic heuristic schemes have been
provided only in very special cases [28].

In another line of research, regularization methods for solving CCO problems have been proposed
as early as 2012 by Nesterov in [30]. In the unconstrained setting, Nesterov proposed a static
regularization method where he applied a S-ACG method a single time to the regularized objective
ϕ(z)+δ∥z−z0∥2. His method achieves a complexity of O

(√
L̄/ϵ

)
for finding an ϵ-stationary point,

a complexity which has not yet been established by a direct method. Similar regularization schemes
that are dynamic and that consider the more general composite setting have been proposed in
[8, 13, 24, 34]. Roughly speaking, dynamic regularization methods solve a sequence of regularized
subproblems of the form ϕ(z) + δk∥z − zk∥2. If the solution zk+1 of the k-th subproblem is not
optimal for (1), the regularization factor δk is halved, the next prox center is updated to be zk+1,
and S-ACG is invoked again to solve the new subproblem. More recently, dynamic parameter-free
regularization methods, including the A-REG method proposed in this paper and the methods in
[14, 17], have also been proposed for solving CCO problems. Table 3 compares the features of
A-REG with other regularization methods for CCO.

We briefly describe each of its columns. The first three columns describe the same features
as the first three columns of Table 1, whose formal descriptions were given previously. The fourth
column presents whether a method solves its strongly convex subproblems according to a stationarity
condition that the ACG variant, which the method uses, checks at each of its iterations or whether
the method solves each subproblem by running a predetermined number of ACG iterations. The
fifth column displays whether a method uses a restarted S-ACG method with an usually aggressive
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strong convexity estimate or a standard S-ACG method to solve its regularized subproblems. The
last column presents whether a method is a static regularization method or a dynamic one that
adaptively updates its prox-center and regularization parameter.

Name Universality Composite Stationarity Checkable Condition Restart Dynamic

of Method Objective Termination for Subproblem S-ACG Regularization

Nesterov (2012) [30] * No Yes Yes No No

Catalyst (2015) [24] * Yes No No No Yes

[8, 13] * Yes Yes Yes No Yes

4WD-Catalyst (2018) [34] * Yes Yes No No Yes

APD Method (2022) [14] L̄ Yes Yes Yes No Yes

AR Method (2023) [17] 1 L̄ Yes Yes No No Yes

A-REG L̄ Yes Yes Yes Yes Yes

Table 3: Comparison of A-REG with other regularization methods for CCO.

As can be seen from Table 3, A-REG is the only method that solves its dynamic regularization
subproblems using a restart S-ACG method which makes an adaptive choice of strong convexity
parameter.

Organization of the paper. Subsection 1.1 presents basic definitions and notations used
throughout this paper. Section 2 formally describes the RPF-SFISTA method for solving SCCO
problems and its main complexity result and analysis. Section 3 presents the A-REG method for
solving CCO problems and its main complexity result and analysis. Section 4 presents extensive
computational experiments that display the superior numerical performance of RPF-SFISTA com-
pared to other state-of-the-art restart schemes on four different important classes of composite
optimization problems. Finally, Appendix A is dedicated to proving an important proposition used
in the complexity analysis of RPF-SFISTA.

1.1 Basic Definitions and Notations

This subsection presents notation and basic definitions used in this paper.
Let ℜ+ and ℜ++ denote the set of nonnegative and positive real numbers, respectively. We

denote by ℜn an n-dimensional inner product space with inner product and associated norm denoted
by ⟨·, ·⟩ and ∥ · ∥, respectively. We use ℜl×n to denote the set of all l×n matrices and S+n to denote
the set of positive semidefinite matrices in ℜn×n. The smallest positive singular value of a nonzero
linear operator Q : ℜn → ℜl is denoted by ν+Q . For a given closed convex set Z ⊂ ℜn, its boundary
is denoted by ∂Z and the distance of a point z ∈ ℜn to Z is denoted by dist(z, Z). The indicator
function of Z, denoted by δZ , is defined by δZ(z) = 0 if z ∈ Z, and δZ(z) = +∞ otherwise. For any
t > 0 and b ≥ 0, we let log+b (t) := max{log t, b}, and we define O1(·) = O(1 + ·).

The domain of a function h : ℜn → (−∞,∞] is the set domh := {x ∈ ℜn : h(x) < +∞}.
Moreover, h is said to be proper if domh ̸= ∅. The set of all lower semi-continuous proper convex
functions defined in ℜn is denoted by Conv ℜn. The ε-subdifferential of a proper function h : ℜn →
(−∞,∞] is defined by

∂εh(z) := {u ∈ ℜn : h(z′) ≥ h(z) + ⟨u, z′ − z⟩ − ε, ∀z′ ∈ ℜn} (2)
1In the general composite setting, the AR method in [17] is not developed or presented as a parameter-free method

and requires knowledge of the Lipschitz constant, L̄. However, in the unconstrained setting the authors develop a
parameter-free variant of the AR method, which they say can be extended to the general composite setting.
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for every z ∈ ℜn. The classical subdifferential, denoted by ∂h(·), corresponds to ∂0h(·). Recall that,
for a given ε ≥ 0, the ε-normal cone of a closed convex set C at z ∈ C, denoted by N ε

C(z), is

N ε
C(z) := {ξ ∈ ℜn : ⟨ξ, u− z⟩ ≤ ε, ∀u ∈ C}.

The normal cone of a closed convex set C at z ∈ C is denoted by NC(z) = N0
C(z). If ϕ is a

real-valued function which is differentiable at z̄ ∈ ℜn, then its affine approximation ℓϕ(·, z̄) at z̄ is
given by

ℓϕ(z; z̄) := ϕ(z̄) + ⟨∇ϕ(z̄), z − z̄⟩ ∀z ∈ ℜn. (3)

2 Strongly Convex Composite Optimization (SCCO)

This section presents a restarted parameter-free FISTA variant, namely RPF-SFISTA, for solving
strongly convex composite optimization (SCCO) problems.

Specifically, RPF-SFISTA assumes that problem (1) has an optimal solution z∗ and that func-
tions f , h, and ϕ satisfy the following assumptions:

(A1) f : E → ℜ is a differentiable convex function that is L̄-smooth, i.e., there exists L̄ ≥ 0 such
that, for all z, z′ ∈ E,

∥∇f(z′)−∇f(z)∥ ≤ L̄∥z′ − z∥; (4)

(A2) h : E→ ℜ∪ {+∞} is a possibly nonsmooth convex function with domain denoted by H;

(A3) ϕ is a µ̄-strongly convex function, where µ̄ > 0.

We now describe the type of approximate solution that RPF-SFISTA aim to find.

Given ϕ satisfying the above assumptions and a tolerance parameter ϵ̂ > 0, the goal of RPF-
SFISTA is to find a pair (y, v) ∈ H × E such that

∥v∥ ≤ ϵ̂, v ∈ ∇f(y) + ∂h(y). (5)

Any pair (y, v) satisfying (5) is said to be an ϵ-optimal solution of (1).
The rest of this section is broken up into three subsections. The first one motivates and states the

RPF-SFISTA method and presents its main complexity results. The second and third subsections
present the proofs of the main results.

2.1 The RPF-SFISTA method

This subsection motivates and states the RPF-SFISTA method and presents its main complexity
results.

The RPF-SFISTA is essentially a restarted version of a S-ACG variant (see for example [27])
that also performs backtracking line-search for the smoothness parameter. RPF-SFISTA calls the S-
ACG variant with an aggressive estimate µ for the strong convexity parameter µ̄. A novel condition
is then checked at each of the variant’s iterations to see if RPF-SFISTA should restart and call the
variant again with a smaller estimate µ = µ/2. Each time RPF-SFISTA restarts, a new cycle of
RPF-SFISTA is said to begin. If RPF-SFISTA calls the S-ACG variant with a strong convexity
estimate µ such that µ ∈ (0, µ̄], then it is shown in Proposition 2.1 below that the current cycle
of RPF-SFISTA must terminate with a pair (y, v) that satisfies (5) and is thus an ϵ-approximate
solution of (1). Hence, RPF-SFISTA performs at most a logarithmic number of restarts/cycles.
The formal description of RPF-SFISTA algorithm is now presented.
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RPF-SFISTA Method

Universal Parameters: scalars χ ∈ (0, 1) and β > 1.
Inputs: let scalars

(
µ0, M̄0

)
∈ ℜ2

++, an initial point z0 ∈ H, a tolerance ϵ̂ > 0, and functions (f, h)
and ϕ := f + h be given, and set l = 1.
Output: a quadruple (y, v, ξ, L).

0. set j = 1, initial point x0 = zl−1, estimates Ml ∈ [max{0.25M̄l−1, M̄0}, M̄l−1] and µ = µl−1,
points (ξ0, y0) = (x0, x0), and scalars (A0, τ0, L0) = (0, 1,Ml);

1. set Lj = Lj−1;

2. compute

aj−1 =
τj−1 +

√
τ2j−1 + 4τj−1Aj−1Lj

2Lj
, x̃j−1 =

Aj−1yj−1 + aj−1xj−1

Aj−1 + aj−1
, (6)

yj := argmin
u∈H

{
qj−1(u; x̃j−1, Lj) := ℓf (u; x̃j−1) + h(u) +

Lj
2
∥u− x̃j−1∥2

}
; (7)

if the inequality

ℓf (yj ; x̃j−1) +
(1− χ)Lj

4
∥yj − x̃j−1∥2 ≥ f(yj) (8)

holds go to step 3; else set Lj ← βLj and repeat step 2;

3. compute

ξj =

{
yj if ϕ(yj) ≤ ϕ(ξj−1)

ξj−1 otherwise,
(9)

Aj = Aj−1 + aj−1, τj = τj−1 +
aj−1µ

2
, (10)

sj = Lj(x̃j−1 − yj), (11)

xj =
1

τj

[µaj−1yj
2

+ τj−1xj−1 − aj−1sj

]
, (12)

vj = ∇f(yj)−∇f(x̃j−1) + sj ; (13)

4. if the inequality

∥ξj − x0∥2 ≥ χAjLj∥yj − x̃j−1∥2, (14)

holds, then go to step 5; otherwise restart, set zl = ξj , M̄l = Lj , µl = µ/2, and l ← l + 1,
and go to step 0;

5. if the inequality
∥vj∥ ≤ ϵ̂ (15)

holds then stop and output quadruple (y, v, ξ, L) := (yj , vj , ξj , Lj); otherwise, set j ← j + 1
and go to step 1.
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Several remarks about RPF-SFISTA are now given. First, RPF-SFISTA is an adaptive and
parameter-free method in that it requires no knowledge of the Lipschitz and strong convexity pa-
rameters and instead adaptively performs line searches for these constants. Second, it performs two
types of iterations, namely cycles indexed by l and inner ACG/FISTA iterations which are indexed
by j. The number of restarts RPF-SFISTA performs is equivalent to the number of cycles it per-
forms minus one. Third, steps 2 and 3 of RPF-SFISTA are essentially equivalent to an iteration
of a S-ACG variant that performs a line-search for the Lipschitz constant of the gradient. Fourth,
step 4 of RPF-SFISTA checks a novel condition (14) to determine whether it should restart or not.
If relation (14) fails to hold during an iteration of the l-th cycle of RPF-SFISTA, RPF-SFISTA
restarts and begins the (l + 1)st cycle with a smaller estimate for the strong convexity parameter
µ. Fifth, RPF-SFISTA performs warm-restarting, i.e., when RPF-SFISTA restarts and begins the
(l+ 1)st cycle it takes as initial point for this cycle the point with the best function value that was
found during the previous cycle. Finally, it will be shown that for any j ≥ 1, the pair (yj , vj) always
satisfies the inclusion in (5). As a consequence, if RPF-SFISTA stops in step 5, output pair (y, v)
is an ϵ-optimal solution of (1).

Before stating the main results of the RPF-SFISTA method, the following quantities are intro-
duced

Cµ̄(·) :=
8

µ̄
[ϕ(·)− ϕ(z∗)] , κ := 2β/(1− χ), (16)

ζl := L̄+max{Ml, κL̄}, Ql := 2
√
2

√
max{Ml, κL̄}

µl−1
, (17)

where L̄ is as in (4) and z∗ is an optimal solution of (1).
The following proposition and theorem state the main complexity results of the RPF-SFISTA

method and key properties of its output. The proofs of Proposition 2.1 and Theorem 2.2 are given
in Appendix A and Subsection 2.2, respectively.

Proposition 2.1. The following statements about the l-th cycle of RPF-SFISTA hold:

(a) it stops (in either step 4 or step 5) in at most⌈
(1 +Ql) log

+
1

(
Cµ̄(zl−1)ζ

2
l

χϵ̂2

)
+ 1

⌉
+

⌈
log+0 (2L̄/((1− χ)Ml))

log β

⌉
(18)

ACG iterations/resolvent evaluations where χ and β are input parameters to RPF-SFISTA, ϵ̂
is the input tolerance, L̄ is as in (4), Cµ̄(·) and κ are as in (16), and Ql and ζl are as in (17);

(b) if the cycle terminates in its step 5, then it outputs a quadruple (y, v, ξ, L) that satisfies

ϕ(ξ) ≤ min {ϕ(z0), ϕ(y)} , M̄0 ≤ L ≤ max
{
M̄0, κL̄

}
(19)

and such that (y, v) is an ϵ̂-optimal solution of (1), where z0 is the initial point and M̄0 is an
input to RPF-SFISTA;

(c) if µl−1 ∈ (0, µ̄], then the cycle always stops successfully in step 5 with a quadruple (y, v, ξ, L)
that satisfies (19) and such that (y, v) is an ϵ̂-optimal solution of (1) in at most (18) ACG
iterations/resolvent evaluations.

The following theorem states the main complexity result of RPF-SFISTA and key properties of
its output.
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Theorem 2.2. RPF-SFISTA terminates with a quadruple (y, v, ξ, L) that satisfies (19) and such
that (y, v) is an ϵ̂-optimal solution of (1) in at most

O1

⌈log+1 (2µ0/µ̄)
⌉√max

{
M̄0, L̄

}
min {µ0, µ̄/2}

log+1

(
(L̄2 + M̄2

0 )Cµ̄(z0)

ϵ̂2

)
+ log+0 (L̄/M̄0)

 (20)

ACG iterations/resolvent evaluations where ϵ̂, µ0, and M̄0 are inputs to RPF-SFISTA, z0 is the
initial point, and µ̄, Cµ̄(·), and L̄ are as in (B2), (16), and (4), respectively.

A remark about Theorem 2.2 is now given. If µ0 = Ω(µ̄) and M̄0 = Ω
(
L̄
)
, it then follows from

the above result and the definition of Cµ̄(·) in (16) that RPF-SFISTA performs at most

O1

√ L̄

µ̄
log+1

(
L̄2

µ̄ϵ̂2

)
ACG iterations/resolvent iterations to find a pair (y, v) that is an ϵ-approximate optimal solution
of (1).

2.2 Proof of Theorem 2.2

This subsection is dedicated to proving Theorem 2.2. The following two lemmas present key prop-
erties of the iterates generated during the l-th cycle of RPF-SFISTA. The proof of the first lemma
below is not given as it closely resembles the proofs of Lemmas A.3 and A.4 in [38].

Lemma 2.3. Let κ be as in (16) and ζl and Ql be as in (17). For every iteration index j ≥ 1
generated during the l-th cycle of RPF-SFISTA, the following statements hold:

(a) {Lj} is nondecreasing;

(b) the following relations hold

τj−1 = 1 +
µAj−1

2
,

τj−1Aj
a2j−1

= Lj , (21)

Ml ≤ Lj−1 ≤ max{Ml, κL̄}, (22)

vj ∈ ∇f(yj) + ∂h(yj), ∥vj∥ ≤ ζl∥yj − x̃j−1∥; (23)

(c) it holds that

AjLj ≥ max

{
j2

4
,
(
1 +Q−1

l

)2(j−1)
}
. (24)

Lemma 2.4. For every iteration index j ≥ 1 generated during the l-th cycle of RPF-SFISTA, it
holds that ϕ(ξj) ≤ min{ϕ(ξj−1), ϕ(yj)}. As a consequence, the following relation holds

ϕ(ξj) ≤ ϕ(zl−1). (25)

Proof. Let j ≥ 1 be an iteration index generated during the l-th cycle of RPF-SFISTA. To see that
ϕ(ξj) ≤ min{ϕ(ξj−1), ϕ(yj)}, consider two possible cases. First, suppose that ϕ(yj) ≤ ϕ(ξj−1). It
follows from the update rule for ξj in (9) that ξj = yj and hence that ϕ(ξj) = ϕ(yj) ≤ ϕ(ξj−1). For
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the other case, suppose that ϕ(yj) > ϕ(ξj−1). Relation (9) then immediately implies that ξj = ξj−1

and hence that ϕ(ξj) = ϕ(ξj−1) < ϕ(yj). Combining the two cases proves the inequality holds.
It then follows from this inequality, a simple induction argument, and the fact that ξ0 = x0 that

ϕ(ξj) ≤ ϕ(x0). This relation and the fact that x0 is set as zl−1 at the beginning of the l-th cycle of
RPF-SFISTA immediately imply relation (25).

Lemma 2.5. For any cycle index l ≥ 1 generated by RPF-SFISTA, the quantity Ml set in step 0
satisfies

Ml ≤ max
{
M̄0, κL̄

}
(26)

where M̄0 > 0 is an input to RPF-SFISTA and L̄ and κ are as in (4) and (16), respectively.

Proof. First, we show that for any cycle index l ≥ 2 generated by RPF-SFISTA, the following
relation

M̄0 ≤ M̄l−1 ≤ max
{
Ml−1, κL̄

}
(27)

holds. Since l ≥ 2 is a cycle index generated by RPF-SFISTA, this implies that its (l − 1)-st cycle
terminates in its step 4 and hence M̄l−1 is generated. Both relations in (27) then immediately follow
from this observation, the fact that the way M̄l−1 is chosen in step 0 implies that M̄0 ≤ Ml−1, the
fact that M̄l−1 is set in step 4 of RPF-SFISTA as Lj for some iteration index j ≥ 1 generated during
the (l − 1)-st cycle, and the first and second inequalities in (22) with l = l − 1.

The proof of (26) now follows from an induction argument. The result with l = 1 follows
immediately from the fact that M1 = M̄0. Suppose now that l ≥ 2 is a cycle index generated by
RPF-SFISTA and that inequality (26) holds for l − 1. It follows from the way Ml is chosen in step
0 at the beginning of the l-th cycle of RPF-SFISTA and the first relation in (27) that Ml ≤ M̄l−1.
This relation and the second relation in (27) then imply that

Ml ≤ M̄l−1 ≤ max
{
Ml−1, κL̄

}
≤ max

{
M̄0, κL̄

}
where the last inequality is due to the induction hypothesis. Hence, Lemma 2.5 holds.

The following lemma establishes a bound on the quantity Cµ̄(zl) in terms of the initial point z0.

Lemma 2.6. For every cycle index l ≥ 1 generated by RPF-SFISTA, the following relations hold

ϕ(zl−1) ≤ ϕ(z0) (28)
Cµ̄(zl−1) ≤ Cµ̄(z0) (29)

where z0 is the initial point of RPF-SFISTA and Cµ̄(·) is as in (16).

Proof. Both relations clearly hold for l = 1, so let l ≥ 2 be a cycle index generated by RPF-SFISTA.
Since l ≥ 2 is a cycle index generated by RPF-SFISTA, this implies that its (l−1)-st cycle terminates
in step 4 and hence zl−1 is generated. It follows from this observation, the fact that zl−1 is set at
the end of step of RPF-SFISTA as ξj for some iteration index j ≥ 1 generated during the (l− 1)-st
cycle, and relation (25) with l = l− 1 that ϕ(zl−1) ≤ ϕ(zl−2). This relation and a simple induction
argument then immediately imply relation (28). Relation (29) then follows from relation (28) and
the definition of Cµ̄(·) in (16).

The following proposition establishes an upper bound on the number of cycles that RPF-SFISTA
performs and a bound on the number of iterations each cycle performs.

Proposition 2.7. The following statements about RPF-SFISTA hold:
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(a) RPF-SFISTA performs at most ⌈log+1 (2µ0/µ̄)⌉ cycles to find a quadruple (y, v, ξ, L) that sat-
isfies relation (19) and such that (y, v) is an ϵ̂-optimal solution of (1). Moreover, for every
cycle index l ≥ 1 generated by RPF-SFISTA, it holds that µl−1 ≥ min {µ0, µ̄/2};

(b) each cycle of RPF-SFISTA performs at most

O1

√max
{
M̄0, L̄

}
min {µ0, µ̄/2}

log+1

(
(L̄2 + M̄2

0 )Cµ̄(z0)

ϵ̂2

)
+ log+0 (L̄/M̄0)


ACG iterations/resolvent evaluations where ϵ̂ and µ0 are inputs to RPF-SFISTA, z0 is the
initial point, and µ̄, L̄, and Cµ̄(·) are as in (B2), (4), and (16), respectively.

Proof. (a) It follows immediately from Proposition 2.1(c) that the l-th cycle of RPF-SFISTA always
terminates successfully in step 5 with a quadruple (y, v, ξ, L) that satisfies relation (19) and such
that (y, v) is an ϵ̂-optimal solution of (1), if it is performed with µl−1 ∈ (0, µ̄]. Both conclusions of
(a) then follow immediately from this observation, from the way that µl is updated when a cycle
terminates in step 4 of RPF-SFISTA, and the fact that the first cycle of RPF-SFISTA is performed
with µ = µ0.

(b) Lemma 2.5 implies that Ml ≤ max
{
M̄0, κL̄

}
for every cycle index l ≥ 1 generated by RPF-

SFISTA. This relation and the definition of ζl in (17) imply that ζ2l ≤ max
{
(L̄+M0)

2, (κ+ 1)2L̄2
}

and hence that ζ2l = O(L̄2 + M̄2
0 ). These relations, the fact that the way Ml is chosen in step 0

implies that Ml ≥ M̄0, Proposition 2.1(a), and the definition of Ql imply that the l-th cycle performs
at most

O1

√max
{
M̄0, L̄

}
µl−1

log+1

(
(L̄2 + M̄2

0 )Cµ̄(zl−1)

ϵ̂2

)
+ log+0 (L̄/M̄0)


ACG iterations/resolvent evaluations. The result then follows from the above relation, relation (29),
and the last conclusion of Proposition 2.7(a).

We are now ready to prove Theorem 2.2.

Proof of Theorem 2.2. The first conclusion of Proposition 2.7(a) and Proposition 2.7(b) immediately
imply the result.

3 Convex Composite Optimization (CCO)

This section presents an aggressive regularized method, namely A-REG, for solving convex compos-
ite optimization (CCO) problems. Specifically, A-REG considers the problem

min{ψ(u) := ψs(u) + ψn(u) : u ∈ E} (30)

whose solution set is nonempty and where functions ψ, ψs, and ψn are assumed to satisfy the
following assumptions:

(B1) ψn : E→ ℜ∪ {+∞} is a possibly nonsmooth convex function with domain denoted by N ;

(B2) ψs : E → ℜ is a differentiable convex function that is L̄ψs-smooth, i.e., there exists L̄ψs ≥ 0
such that, for all z, z′ ∈ E,

∥∇ψs(z′)−∇ψs(z)∥ ≤ L̄ψs∥z′ − z∥; (31)
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(B3) the sublevel sets of ψ are bounded.

Assumption (B3) is a common assumption and a similar type of assumption is made in [17, 24, 30].
Given a tolerance ϵ > 0, the goal of A-REG is to find a pair (w, r) ∈ N × E such that

∥r∥ ≤ ϵ, r ∈ ∇ψs(w) + ∂ψn(w). (32)

Any pair (w, r) satisfying (32) is said to be an ϵ-optimal solution of (30).

3.1 The Aggressive Regularization (A-REG) method

This subsection motivates and states the aggressive regularization (A-REG) method and presents
its main complexity results.

Like the methods in [14, 17, 24, 30, 34], A-REG is a regularization method. At each of iterations,
A-REG forms strongly convex regularized subproblems which it solves using the RPF-SFISTA
method developed in Subsection 2.1. A-REG calls RPF-SFISTA with an aggressive initial choice
of strong convexity estimate, µ0, that is possibly much larger than the known strong convexity
parameter of the objective of the regularized subproblem. RPF-SFISTA checks a key inequality
at each of iterations to determine when a regularized subproblem has been approximately solved.
Hence, A-REG is more aggressive than the schemes employed by [17, 24, 34], which run a standard
ACG or S-ACG variant for a predetermined number of iterations to solve each subproblem. The
schemes in [14, 30] do not run a S-ACG variant for a predetermined number of iterations to solve
each subproblem, but are less aggressive than A-REG as both schemes do not use a restarted S-
ACG method for solving each of subproblem but rather they use a standard S-ACG method with
an accurate estimate for strong convexity parameter to do so.

The A-REG method is now presented.

A-REG Method

Universal Parameters: scalars χ ∈ (0, 1) and β > 1.
Inputs: let scalars B ≥ 1 and (δ0, N̄0) ∈ ℜ2

++, an initial point ϑ0 ∈ N , a tolerance ϵ > 0, and
functions (ψs, ψn) and ψ := ψs + ψn be given, and set w0 = ϑ0 and k = 1.
Output: a pair (w, r) satisfying (32).

1. choose Nk ∈ [max{0.25N̄k−1, N̄0}, N̄k−1] and call the RPF-SFISTA method described in Sub-
section 2.1 with inputs

z0 = ϑk−1, (µ0, M̄0) = (Bδk−1,Nk), ϵ̂ = ϵ/6 (33)

(f, h) =

(
ψs +

δk−1

2
∥ · −ϑk−1∥2, ψn

)
, ϕ(·) = ψ(·) + δk−1

2
∥ · −ϑk−1∥2 (34)

and let (wk, uk, ϑk, N̄k) denote its output (y, v, ξ, L);

2. set
rk := uk + δk−1(ϑk−1 − wk); (35)

3. if ∥rk∥ ≤ ϵ then stop and output (w, r) = (wk, rk); else set δk = δk−1/2, k ← k + 1, and go to
step 1.

11



Several remarks about A-REG are now given. First, A-REG is a parameter-free and an aggressive
method in that it requires no knowledge of the Lipschitz constant and employs a restarted parameter-
free method, RPF-SFISTA, to solve its strongly convex subproblems. Second, the k-th iteration
of A-REG calls RPF-SFISTA with a function ϕ as in (34) that is δk−1-strongly convex. However,
A-REG calls RPF-SFISTA with an aggressive initial strong convexity estimate µ0 = Bδk−1 where
B ≥ 1. Hence, A-REG differs from the methods in [14, 17, 24, 30, 34] as these methods do not
call restarted S-ACG methods with an aggressive initial choice for the strong convexity estimate
to solve their subproblems, but rather they call standard S-ACG or even ACG methods to solve
them. Finally, it will be shown in the next subsection that for any k ≥ 1, the pair (wk, rk) always
satisfies the inclusion rk ∈ ∇ψs(wk) + ∂ψn(wk). Thus, if A-REG stops in its step 3, it follows that
output pair (w, r) = (wk, rk) is an ϵ-optimal solution of (30).

Remark 3.1. Assumption (B3) implies that the sublevel set S := {x ∈ N : ψ(x) ≤ ψ(ϑ0)} is
bounded, i.e., any ϑ ∈ S satisfies ∥ϑ∥ ≤ D where D > 0.

Before stating the main result of the A-REG method, the following quantities are introduced

L̄δ0 = κ
(
L̄ψs + δ0

)
, ψ0 = ψ(ϑ0)− ψ(w∗), L̄2 = max

{
L̄2
δ0 + N̄2

0 , 2L̄
2
δ0

}
(36)

where κ is as in (16), δ0 is an input parameter of A-REG, ϑ0 is the initial point, and w∗ is an
optimal solution of (30).

The following theorem states the main complexity result of A-REG.

Theorem 3.1. A-REG terminates with a pair (w, r) that is an ϵ-optimal solution of (30) in at
most

O1

⌈log+1 (8Dδ0/ϵ)⌉
⌈
log+1 2B

⌉√ 2max
{
N̄0, L̄δ0

}
min {δ0, ϵ/(8D)}

log+1

(
288ψ0L̄2

min {δ0, ϵ/(8D)} ϵ2

)
+ log(L̄δ0/N̄0)


ACG iterations/resolvent evaluations where ϵ, δ0, and N̄0 are inputs to A-REG, L̄δ0, ψ0, and

L̄2 are as in (36), and B ≥ 1 and D > 0 are scalars as in (33) and Assumption 3.1, respectively.

Several remarks about Theorem 3.1 are now given. It follows from the definition of L̄δ0 in (36)
that, up to logarithmic terms, A-REG performs at most

O1

(√
L̄ψs

ϵ

)

ACG iterations/resolvent iterations to find a pair (w, r) that is an ϵ-approximate optimal solution
of (30). Ignoring logarithmic terms, this complexity is optimal for finding an approximate optimal
solution according to the criterion in (32).

3.2 Proof of Theorem 3.1

This subsection is dedicated to proving Theorem 3.1. Before stating the next lemma, we introduce
the following quantities which are used throughout this subsection

ψδ(w;ϑ) := ψ(w) +
δ

2
∥w − ϑ∥2, Cδ(·) :=

8

δ
[ψ(·)− ψ(w∗)] (37)
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where δ > 0 is a scalar and w∗ is an optimal solution of (30).
Since A-REG calls the RPF-SFISTA method during each of its iterations, the following lemma

specializes Theorem 2.2, which states the complexity of RPF-SFISTA and key properties of its
output, to this set-up.

Lemma 3.2. The following statements about the k-th iteration of A-REG hold

(a) the function f in (34) is (L̄ψs + δ0)-smooth and δk−1-strongly convex. As a consequence, the
function, ϕ in (34) is δk−1-strongly convex;

(b) the call made to the RPF-SFISTA method in step 1 outputs a quadruple (wk, uk, ϑk, N̄k) that
satisfies the following relations

ψ(ϑk) ≤ ψ(ϑk−1), ψδk−1
(ϑk;ϑk−1) ≤ ψδk−1

(wk;ϑk−1), N̄0 ≤ N̄k ≤ max{Nk, L̄δ0}, (38)

uk ∈ ∇ψs(wk) + δk−1(wk − ϑk−1) + ∂ψn(wk), ∥uk∥ ≤
ϵ

6
(39)

where L̄δ0 and ψδ(w;ϑ) are as in (36) and (37), respectively;

(c) the call made to the RPF-SFISTA method performs at most

O1

⌈log+1 (2B)
⌉√2max

{
Nk, L̄δ0

}
δk−1

log+1

(
36
(
L̄2
δ0
+ N2

k

)
Cδk−1

(ϑk−1)

ϵ2

)
+ log(L̄δ0/N̄0)


ACG iterations/resolvent evaluations to find a quadruple (wk, uk, ϑk, N̄k) satisfying relations
(38) and (39) , where B ≥ 1 and Cδ(·) are as in (33) and (37), respectively.

Proof. (a) It follows immediately from the facts that ψs is L̄ψs-smooth and ψs and ψ are convex
functions and the fact that during the k-th iteration of A-REG, the call to RPF-SFISTA is made
with f(·) := ψs(·)+0.5δk−1∥ ·−ϑk−1∥2 and ϕ(·) := ψ(·)+0.5δk−1∥ ·−ϑk−1∥2 that f is (L̄ψs + δk−1)-
smooth and δk−1-strongly convex and ϕ is δk−1-strongly convex. The result then follows immediately
from this conclusion and the fact that the way δk is updated in step 3 of A-REG implies that δk ≤ δ0
for any iteration index k ≥ 1.

(b) It follows from the definitions of ϕ and ψδ in (34) and (37), respectively, that the call to
RPF-SFISTA during the k-th iteration of A-REG is made with ϕ(·) := ψδk−1

(·;ϑk−1). It then
follows from this observation, the fact that RPF-SFISTA is called with functions (f, h) and ϕ as
in (34) and inputs (z0, M̄0) = (ϑk−1, N̄k), Theorem 2.2, and part (a) that RPF-SFISTA outputs a
quadruple (wk, uk, ϑk, N̄k) = (y, v, ξ, L) that satisfies

ψδk−1
(ϑk;ϑk−1) ≤ min

{
ψδk−1

(ϑk−1;ϑk−1), ψδk−1
(wk;ϑk−1)

}
, Nk ≤ N̄k ≤ max

{
Nk, κ(L̄ψs + δ0)

}
.

The relations in (38) then follow from the above relations, the fact that the way Nk is chosen in
step 1 implies that Nk ≥ N̄0, the definition of L̄δ0 in (36), and the fact that the definition of ψδ in
(37) implies that ψ(ϑk) ≤ ψδk−1

(ϑk;ϑk−1) and ψδk−1
(ϑk−1;ϑk−1) = ψ(ϑk−1).

It also follows immediately from Theorem 2.2, the definition of ϵ-optimal solution, and the fact
that RPF-SFISTA is called with tolerance ϵ̂ = ϵ/6 and function pair (f, h) as in (34) that pair
(wk, uk) = (y, v) satisfies both relations in (39).

(c) Consider the call made to RPF-SFISTA during the k-th iteration of A-REG. It follows directly
from part (a), the fact that κ ≥ 1, and the definition of L̄δ0 in (36) that the function f in (34) is
L̄δ0-smooth and hence satisfies relation (4) with L̄ = L̄δ0 . Part (a) implies that ϕ is δk−1-strongly
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convex and thus satisfies assumption (A3) with µ̄ = δk−1. It also follows from the definitions of ϕ
and ψδ in (34) and (37), respectively that ϕ(ϑk−1) = ψ(ϑk−1) and that ψ(w∗) ≤ minx ψδk−1

(x;ϑk−1)
where w∗ is an optimal solution of (30). It then follows from these conclusions, the fact that the
call to RPF-SFISTA is made with tolerance ϵ̂ = ϵ/6, functions (f, h) and ϕ as in (34), initial point
z0 = ϑk−1, and inputs (µ0, M̄0) = (Bδk−1,Nk), and the definitions of Cµ̄(·) and Cδ(·) in (16) and
(37), respectively that RPF-SFISTA performs at most

O1

⌈log+1 (2B)
⌉√ 2max

{
Nk, L̄δ0

}
min {Bδk−1, δk−1/2}

log+1

(
36
(
L̄2
δ0
+ N2

k

)
Cδk−1

(ϑk−1)

ϵ2

)
+ log(L̄δ0/Nk)


ACG iterations/resolvent evaluations. The result then follows from this conclusion, the fact that
the way Nk is chosen in step 1 of A-REG implies that Nk ≥ N̄0, the fact that B ≥ 1, and part
(b).

Lemma 3.3. For every iteration index k ≥ 1 generated by A-REG, the quantity Nk satisfies

Nk ≤ max
{
N̄0, L̄δ0

}
(40)

where N̄0 is an input to A-REG and L̄δ0 is as in (36).

Proof. The proof follows from an induction argument. The fact that N1 = N̄0 immediately implies
that relation (40) holds for k = 1. Suppose now that k ≥ 2 is an iteration index generated by
A-REG and that inequality (40) holds for k − 1. It follows from the way Nk is chosen in step 1 of
the k-th iteration of A-REG and the first inequality in the last relation in (38) that Nk ≤ N̄k−1.
This relation and the last inequality in (38) with k = k − 1 then imply that

Nk ≤ N̄k−1

(38)
≤ max{Nk−1, L̄δ0} ≤ max

{
N̄0, L̄δ0

}
where the last inequality is due to the induction hypothesis. Hence, relation (40) holds for every
iteration index k ≥ 1 generated by A-REG.

A useful fact that is used in the proof of following result is that if a function Ψ : E→ ℜ∪{+∞}
is ν-convex with modulus ν > 0, then it has an unique global minimum x∗ and

Ψ(x∗) +
ν

2
∥ · −x∗∥2 ≤ Ψ(·). (41)

Lemma 3.4. For any iteration index k ≥ 1 generated by A-REG, the following relations hold

rk ∈ ∇ψs(wk) + ∂ψn(wk) (42)

∥ϑk∥ ≤ D, ∥wk∥ ≤ D +
ϵ

3δk−1
(43)

where D > 0 is as in Assumption 3.1 and ϵ > 0 is the input tolerance to A-REG.

Proof. Relation (42) follows immediately from the inclusion in (39) and the definition of rk in
(35). It follows immediately from the first inequality in (38) and a simple induction argument that
ψ(ϑk) ≤ ψ(ϑ0) for any iteration index k ≥ 1 generated by A-REG. This relation and Assumption 3.1
then immediately imply that the first relation in (43) holds.

The second relation in (43) clearly holds if ∥wk − ϑk∥ = 0 since this relation together with the
first relation in (43) implies that ∥wk∥ = ∥ϑk∥ ≤ D. Hence, assume that ∥wk − ϑk∥ > 0. It follows
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from the definition of ψδ(w;ϑ) in (37) and the facts that ψs and ψn are convex that the inclusion
in (39) is equivalent to uk ∈ ∂ψδk−1

(wk;ϑk−1). This inclusion implies that

wk = argmin
x

ψδk−1
(x;ϑk−1)− ⟨uk, x− wk⟩.

It then follows from this relation, the fact that the definition of ψδ(w;ϑ) in (37) implies that
ψδk−1

(x;ϑk−1)−⟨uk, x−wk⟩ is δk−1-strongly convex, and relation (41) with Ψ(·) = ψδk−1
(·;ϑk−1)−

⟨uk, · − wk⟩, x∗ = wk, and ν = δk−1 that

ψδk−1
(wk;ϑk−1) +

δk−1

2
∥x− wk∥2 ≤ ψδk−1

(x;ϑk−1)− ⟨uk, x− wk⟩ (44)

for all x ∈ E. Relation (44) with x = ϑk and the second relation in (38) imply that ⟨uk, wk − ϑk⟩ ≥
0.5δk−1∥ϑk−wk∥2 which together with the fact that ∥wk−ϑk∥ > 0 and Cauchy-Schwarz inequality
implies that 0.5δk−1∥ϑk − wk∥ ≤ ∥uk∥. This relation, the first relation in (43), the inequality in
(39), and reverse triangle inequality then imply that

∥wk∥ ≤ ∥ϑk∥+ ∥ϑk − wk∥
(43)
≤ D +

2

δk−1
∥uk∥

(39)
≤ D +

ϵ

3δk−1

from which the second relation in (43) immediately follows.

The following proposition establishes an upper bound on the number of iterations that A-REG
performs and, consequently, a lower bound on the quantity δk.

Proposition 3.5. A-REG performs at most ⌈log+1 (8Dδ0/ϵ)⌉ iterations to find a pair (w, r) that
satisfies (32). Moreover, for every iteration index k ≥ 1 generated by A-REG, it holds that δk−1 ≥
min {δ0, ϵ/(8D)}.

Proof. In view of the fact that the first iteration of A-REG is performed with δ0, the way δk is
updated at the end of step 3 of A-REG, and the fact that for any iteration index k generated by
A-REG pair (wk, rk) always satisfies inclusion (42), to show both conclusions of the proposition it
suffices to show that if the k-th iteration of A-REG is performed with δk−1 ≤ ϵ/(4D), then ∥rk∥ ≤ ϵ
and hence A-REG terminates in its k-th iteration.

Hence, assume that the k-th iteration of A-REG is performed with δk−1 ≤ ϵ/(4D). It then
follows from this relation, the definition of rk in (35), triangle inequality, the inequality in (39), and
both relations in (43) that

∥rk∥
(35)
≤ ∥uk∥+ δk−1∥ϑk−1 − wk∥

(39)
≤ ϵ

6
+ δk−1∥ϑk−1 − wk∥

≤ ϵ

6
+ δk−1 (∥ϑk−1∥+ ∥wk∥)

(43)
≤ ϵ

6
+ δk−1

(
2D +

ϵ

3δk−1

)
=
ϵ

2
+ 2Dδk−1 ≤ ϵ.

It then follows from the above relation that A-REG terminates in step 3 of its k-th iteration with
a pair (w, r) = (wk, rk) satisfying (32) and hence both conclusions of the proposition hold.

We are now ready to prove Theorem 3.1.

Proof. It follows from the first relation in (38) and an induction argument that ψ(ϑk) ≤ ψ(ϑ0) for
any iteration index k ≥ 1 generated by A-REG. It then follows from this fact and the definitions
of ψ0 and Cδ(·) in (36) and (37), respectively, that 36Cδk−1

(ϑk−1) ≤ (288ψ0)/δk−1. It then follows
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from this relation, the definition of L̄2 in (36), the bounds on Nk and δk in (40) and Proposition 3.5,
respectively, and Lemma 3.2(c) that the call made to the RPF-SFISTA method during the k-th
iteration of A-REG performs at most⌈log+1 (8Dδ0/ϵ)⌉

⌈
log+1 2B

⌉√ 2max
{
N̄0, L̄δ0

}
min {δ0, ϵ/(8D)}

log+1

(
288ψ0L̄2

min {δ0, ϵ/(8D)} ϵ2

)
+ log(L̄δ0/N̄0)


ACG iterations/resolvent evaluations. The result then immediately follows from this observation
and the first conclusion of Proposition 3.5.

4 Numerical Experiments

This section benchmarks the numerical performance of RPF-SFISTA against four other state-of-the-
art methods for solving four classes of strongly convex/convex composite optimization problems. It
contains five subsections. The first subsection reports the numerical performance of all 5 methods
on sparse logistic regression problems, the second one reports the performance of the methods on
Lasso problems, while the third and fourth subsections report the numerical performance of all the
methods on dense vector quadratic programs constrained to the simplex and box, respectively. The
last subsection contains comments about the numerical results.

We now describe our implementation of RPF-SFISTA. First, the input parameters of RPF-
SFISTA are chosen as

β = 1.25, χ = 0.001, M1 = 10.

Second, for each problem instance, the initial strong convexity estimate µ0 is always taken as

µ0 =
4 [f(y1)− ℓf (y1; x̃0)]
(1− χ)∥y1 − x̃0∥2

where y1 and x̃0 are generated at the end of step 3 of the first cycle of RPF-SFISTA. Third, each
time RPF-SFISTA restarts, the next strong convexity estimate µl is taken to be µl = 0.1µl−1.
Finally, for l ≥ 2, Ml is chosen as 0.4M̄l−1.

RPF-SFISTA is bench-marked against the following four state-of-the-art algorithms. Specifi-
cally, we consider the FISTA method with backtracking presented in [6] (nicknamed FISTA-BT), the
restarted method of [33] (nicknamed FISTA-R), the RADA-FISTA method of [23] (nicknamed RA-
FISTA), and the Greedy-FISTA method of [23] (nicknamed GR-FISTA). FISTA-R restarts based
on a heuristic function value restarted scheme. RADA-FISTA and Greedy-FISTA are restarted
FISTA methods that restart based on the heuristic gradient restarted scheme presented in [33].

Next, we describe the implementation details of the four algorithms which we compare RPF-
SFISTA with. The implementation of FISTA-BT adaptively searches for a Lipschitz estimate Lj
by a procedure similar to step 2 of RPF-SFISTA. Specifically, it checks an inequality similar to
(8) with χ = 0.001 and if the inequality does not hold, it doubles its Lipschitz estimate Lj , re-
generates its potential next iterate yj , and checks the inequality again. Also, like RPF-SFISTA,
FISTA-BT sets 10 as its initial guess for the Lipschitz constant. FISTA-R restarts FISTA-BT
(as described above) if FISTA-BT finds a point yj with worse objective value than the previous
point, i.e., if ϕ(yj) > ϕ(yj−1). It also sets 10 as an initial estimate for the Lipchitz constant. The
implementations of RADA-FISTA and Greedy-FISTA are taken directly from the authors’ Github
repository, https://github.com/jliang993/Faster-FISTA. The input parameters of RADA-FISTA are
chosen as

p = 0.5, q = 0.5, r = 4, γ =
1

L̄
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where L̄ is the global Lipschitz constant of the gradient of f . All input parameters are chosen so
as to meet the required ranges presented in Algorithm 4.2 of [23]. Greedy-FISTA only takes in a
single input, a stepsize γ, which is chosen as 1.3/L̄. This more aggressive choice of stepsize is in the
range suggested in the paragraph following Algorithm 4.3 in [23] and is the stepsize used in several
of the experiments presented in the authors’ Github repository. The code further has a safeguard
which allows the stepsize to be decreased if a certain condition is satisfied.

We now describe the type of solution each of the methods aims to find. That is, given functions
f and h satisfying assumptions (B1)-(B3) described in Section 2, an initial point z0 ∈ H, and
tolerance ϵ̂ > 0, each of the methods aims to find a pair (z, v) satisfying:

v ∈ ∇f(z) + ∂h(z),
∥v∥

1 + ∥∇f(z0)∥
≤ ϵ̂ (45)

where ∥ · ∥ signifies the Euclidean norm.
The tables below report the runtimes and the total number of ACG iterations/resolvent eval-

uations needed to find a pair (z, v) satisfying (45). A tolerance of either 10−8 or 10−13 is set and
a time limit of 7200 seconds (2 hours) is given. An entry of a table marked with ∗/N means that
the corresponding method finds an approximate solution with relative accuracy strictly larger than
the desired accuracy in which case N expresses the minimum relative accuracy that the method
achieved within the time limit of 2 hours. The bold numbers in the tables of this section indicate
the algorithm that performed the best for that particular metric (i.e. runtime or ACG iterations).

It will be seen from the numerical results presented in Subsections 4.1, 4.2, 4.3, and 4.4 that our
method, RPF-SFISTA, was the fastest method and the only method able to find a solution of the
desired accuracy (either 10−8 or 10−13) on every instance considered. To compare RPF-SFISTA
and the second-best performing method on a particular problem class more closely, we also report
in each table caption the following average time ratio (ATR) between the two methods defined as

ATR =
1

N

N∑
i=1

bi/ri, (46)

where N is the number of class instances that both methods were tested on and bi and ri are the
runtimes of the second-best performing method and RPF-SFISTA for instance i, respectively. If
a method did not finish within the time limit of 7200 seconds on a particular instance, then its
runtime for that instance is conservatively recorded as 7200 seconds in the computation of the ATR
metric.

All experiments were performed in MATLAB 2024a and run on a Macbook Pro with a Apple
M3 Max chip and 128 GB of memory.

4.1 Sparse logistic regression

Consider the problem

min
z∈Rn

[
f(z) :=

m∑
i=1

log (1 + exp(−bi⟨ai, z⟩)

]
s.t. ∥z∥1 ≤ C

where ai ∈ Rn and bi ∈ {−1, 1} for i ∈ [m], and C > 0 is a regularization parameter. For our
experiments in § 4.1, we vary the dimension pair (m,n) and C is taken to be either 0, 0.5, or
1. For each instance, the initial point x0 is chosen to be a random point satisfying ∥x0∥1 ≤ C.
The Lipschitz constant L̄ of f is upper bounded by 0.25λmax(D

TD) where D ∈ Rm×n satisfies
Dij = −aji bi and aji denotes the j-th entry of ai.
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Parameters Lipschitz Iteration Count/Runtime (seconds)

(m,n,C) L̄ RPF-SFISTA FISTA-BT FISTA-R RA-FISTA GR-FISTA

(500, 50,000, 0.5) 1.56 ∗ 106 429/32.75 12140/1013.03 5357/529.51 6483/463.16 6303/410.17

(500, 50,000, 1) 1.56 ∗ 106 802/62.23 85066/6958.55 21177/2065.41 7069/490.30 6474/410.03

(500, 50,000, 2) 1.56 ∗ 106 909/71.02 59479/4766.41 19469/1886.22 8445/589.76 7889/508.38

(1000, 250,000, 0.5) 1.56 ∗ 107 1110/739.98 */6.51e-07 */3.27e-08 */4.91e-08 14898/6694.58

(1000, 250,000, 1) 1.56 ∗ 107 1375/943.30 */2.67e-06 */8.08e-07 */2.30e-07 */1.52e-07

(1000, 250,000, 2) 1.56 ∗ 107 1712/1199.78 */2.71e-06 */1.33e-07 */2.38e-07 */2.25e-07

(300, 500,000, 0.5) 9.39 ∗ 106 598/230.24 13383/5313.30 4355/2224.32 23569/7087.33 19019/5807.34

(300, 500,000, 1) 9.39 ∗ 106 1421/561.68 */8.47e-08 */8.18e-08 */1.47e-07 23125/6971.15

(300, 500,000, 2) 9.39 ∗ 106 977/382.66 */1.08e-06 */4.47e-07 */2.64e-07 */7.62e-08

(100, 1,000,000, 0.5) 6.27 ∗ 106 588/178.35 6129/1938.83 2824/1126.19 */4.70e-08 24554/6419.97

(100, 1,000,000, 1) 6.27 ∗ 106 1389/431.63 */7.74e-08 8845/3530.80 */5.50e-07 */2.09e-07

(100, 1,000,000, 2) 6.27 ∗ 106 2099/673.07 */1.93e-06 */4.92e-07 */5.29e-06 */3.98e-06

Table 4: Iteration counts and runtimes (in seconds) for the sparse logistic regression problem in § 4.1. The tolerances are set
to 10−8. Entries marked with * did not converge in the time limit of 7200 seconds. The ATR metric is 14.06.

4.2 Lasso

Consider the problem

min
z∈Rn

[
f(z) :=

1

2
∥Az − b∥2

]
s.t. ∥z∥1 ≤ C

where A ∈ Rm×n and b ∈ Rm and C > 0 is a regularization parameter. For our experiments in § 4.2,
the matrix A and the vector b are taken from the linear programming test problems considered in
the datasets ‘Meszaros’ and ‘Mittelmann’. The regularization parameter, C is taken to be either 1,
5, or 10 and for each problem instance, the initial point x0 is chosen to be a random point satisfying
∥x0∥1 ≤ C. The Lipschitz constant L̄ of the gradient of f is just ∥A∥2. The results comparing the
five methods are presented in Tables 5 and 6, where the names of each problem instance considered
from the Meszaros and Mittelmann datasets are also given.

4.3 Dense QP with Simplex Constraints

Given a pair of dimensions (m,n) ∈ N2, a scalar pair (τ1, τ2) ∈ ℜ2
++, matrices B ∈ ℜn×n and

C ∈ ℜm×n, positive diagonal matrix D ∈ ℜn×n, and a vector d ∈ ℜm, this subsection considers the
problem

min
z

[
f(z) :=

τ1
2
∥DBz∥2 + τ2

2
∥Cz − d∥2

]
s.t. z ∈ ∆n,

where ∆n := {x ∈ ℜn+ :
∑n

i=1 xi = 1}. For our experiments in § 4.3, we vary the dimensions
and generate the matrices B and C to be fully dense. The entries of B, C, and d (resp. D) are
generated by sampling from the uniform distribution U [0, 1] (resp. U [1, α]) where the parameter
α ≥ 1 is varied. The initial starting point x0 is generated as x̂/

∑n
i=1 x̂i, where the entries of x̂ are

sampled from the U [0, 1] distribution. Finally, we choose (τ1, τ2) ∈ ℜ2
++ so that L̄ = λmax(∇2f) and

µ̄ = λmin(∇2f) are the various values given in the tables of this subsection. The results comparing
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Parameters Lipschitz Name Iteration Count/Runtime (seconds)

(m,n,C) L̄ RPF-SFISTA FISTA-BT FISTA-R RA-FISTA GR-FISTA

(825, 8,627, 1) 1.55∗103 aa03 226/0.28 4888/4.86 4598/4.45 706/0.86 636/0.66

(825, 8,627, 5) 1.55∗103 aa03 722/0.72 8482/8.07 8482/7.82 1322/1.44 1198/1.06

(825, 8,627, 10) 1.55∗103 aa03 472/0.52 13132/13.04 9654/9.18 1352/1.47 1239/1.14

(426, 7,195, 1) 1.73∗103 aa4 348/0.29 1522/1.27 1461/1.22 833/0.83 735/0.56

(426, 7,195, 5) 1.73∗103 aa4 432/0.44 6898/5.87 6898/5.48 1589/1.44 1605/1.30

(426, 7,195, 10) 1.73∗103 aa4 735/0.64 10377/10.03 8503/7.39 2289/2.14 2203/1.75

(50, 6,774, 1) 1.73∗104 air02 370/0.34 5223/4.32 3570/2.66 3482/3.32 3380/2.65

(50, 6,774, 5) 1.73∗104 air02 3410/2.78 125979/102.89 124619/87.70 28156/23.63 21579/15.82

(50, 6,774, 10) 1.73∗104 air02 5078/2.59 129536/57.52 131588/61.23 1551/1.07 1353/0.59

(124, 10,757, 1) 1.57∗104 air03 627/11.80 7138/127.32 5173/78.53 3211/42.12 3488/65.76

(124, 10,757, 5) 1.57∗104 air03 1090/17.61 41501/618.35 41501/605.35 9257/139.24 10359/219.91

(124, 10,757, 10) 1.57∗104 air03 2996/70.14 286189/4624.86 289853/4549.27 93958/1598.77 30278/552.48

(823, 8,904, 1) 1.50∗103 air04 339/0.32 5233/5.20 3139/3.13 1150/1.20 980/1.02

(823, 8,904, 5) 1.50∗103 air04 342/0.36 5575/5.59 5085/5.35 1163/1.26 977/1.01

(823, 8,904, 10) 1.50∗103 air04 903/0.86 10956/10.02 9270/8.62 1257/1.39 1342/1.36

(769, 2,561, 1) 1.54∗103 gen 93/0.06 450/0.19 323/0.15 331/0.15 254/0.11

(769, 2,561, 5) 1.54∗103 gen 177/0.09 1488/0.66 948/0.43 498/0.20 454/0.18

(769, 2,561, 10) 1.54∗103 gen 190/0.11 2613/1.09 1491/0.69 689/0.30 591/0.27

(163, 28,016, 1) 5.64∗104 us04 438/7.57 11162/158.37 9858/135.20 5954/99.42 6357/104.38

(163, 28,016, 5) 5.64∗104 us04 1119/21.39 41307/644.84 33990/520.40 8530/135.05 9609/171.61

(163, 28,016, 10) 5.64∗104 us04 1713/33.49 422708/6284.62 446469/6230.74 14290/215.23 14280/205.82

(520, 1,544, 1) 3.10∗104 rosen1 30/0.009 30/0.007 30/0.006 31/0.007 14/0.005

(520, 1,544, 5) 3.10∗104 rosen1 87/0.02 151/0.02 128/0.02 151/0.03 108/0.02

(520, 1,544, 10) 3.10∗104 rosen1 101/0.02 288/0.05 205/0.04 231/0.05 181/0.03

(2,056, 6,152, 1) 1.17∗105 rosen10 29/0.02 29/0.02 29/0.02 58/0.04 20/0.02

(2,056, 6,152, 5) 1.17∗105 rosen10 163/0.13 624/0.39 363/0.22 449/0.31 388/0.26

(2,056, 6,152, 10) 1.17∗105 rosen10 209/0.16 2491/1.62 1172/0.78 535/0.40 421/0.25

(135, 6,469, 1) 4.93∗103 crew1 477/0.28 9519/5.31 8573/5.12 2689/1.57 2821/1.67

(135, 6,469, 5) 4.93∗103 crew1 1790/1.25 44385/34.44 31153/26.13 4655/3.65 5529/4.11

(135, 6,469, 10) 4.93∗103 crew1 2362/1.63 1000023/718.28 1000023/764.45 9093/6.88 9473/6.92

Table 5: Iteration counts and runtimes (in seconds) for the Lasso problem in § 4.2. The tolerances are set to 10−13. Entries
marked with * did not converge in the time limit of 7200 seconds. The ATR metric is 3.87.

the five methods are presented in Tables 7 and 8. Table 7 and Table 8 present the performance of
all five methods on the same exact 12 instances, but for target accuracies ϵ = 10−8 and ϵ = 10−13,
respectively.

4.4 Dense QP with Box Constraints

Given a pair of dimensions (m,n) ∈ N2, a scalar triple (r, τ1, τ2) ∈ ℜ3
++, matrices B ∈ ℜn×n and

C ∈ ℜm×n, positive diagonal matrix D ∈ ℜn×n, a vector pair (a, d) ∈ ℜn ×ℜm, and a scalar b ∈ ℜ,
this subsection considers the problem

min
z

[
f(z) :=

τ1
2
∥DBz∥2 + τ2

2
∥Cz − d∥2

]
s.t. aT z = b

19



Parameters Lipschitz Name Iteration Count/Runtime (seconds)

(m,n,C) L̄ RPF-SFISTA FISTA-BT FISTA-R RA-FISTA GR-FISTA

(905, 1,513, 1) 2.14∗105 cr42 161/0.05 451/0.07 408/0.07 81/0.01 83/0.01

(905, 1,513, 5) 2.14∗105 cr42 765/0.15 11628/1.89 4503/0.74 627/0.09 395/0.06

(905, 1,513, 10) 2.14∗105 cr42 8180/1.47 197048/39.93 39202/8.13 4027/0.77 3465/0.62

(71, 36,699, 1) 2.49∗104 kl02 2585/75.80 8633/188.86 8633/192.25 5812/139.33 5966/138.34

(71, 36,699, 5) 2.49∗104 kl02 659/21.54 1574/39.99 */2.99e-07 459/10.27 412/8.59

(71, 36,699, 10) 2.49∗104 kl02 500/11.22 1571/27.56 811/22.23 374/6.49 345/6.30

(664, 46,915, 1) 1.58∗104 t0331-4l 499/10.67 4742/94.66 3291/85.86 1988/43.69 1963/35.04

(664, 46,915, 5) 1.58∗104 t0331-4l 854/20.36 22202/440.41 15215/391.61 3726/87.56 4589/80.62

(664, 46,915, 10) 1.58∗104 t0331-4l 598/13.81 115672/2826.81 91697/2846.42 3959/82.91 3846/77.28

(507, 63,516, 1) 2.23∗104 rail507 441/9.45 16380/322.10 14546/379.22 3871/89.02 3944/79.39

(507, 63,516, 5) 2.23∗104 rail507 633/16.98 33798/946.03 25542/801.14 5445/150.25 5724/155.04

(507, 63,516, 10) 2.23∗104 rail507 1081/26.66 54412/1198.24 42622/1202.48 6682/167.30 7649/179.36

(516, 47,827, 1) 2.07∗104 rail516 1132/24.25 5795/96.74 5795/131.08 3890/76.33 3719/91.63

(516, 47,827, 5) 2.07∗104 rail516 615/14.33 16843/318.72 12423/295.14 5053/129.64 5188/154.17

(516, 47,827, 10) 2.07∗104 rail516 1053/26.65 25057/563.01 25057/720.52 6155/163.21 5688/155.14

(582, 56,097, 1) 3.46∗104 rail582 656/16.51 10000/263.01 10000/327.45 7427/196.50 7139/218.76

(582, 56,097, 5) 3.46∗104 rail582 518/14.02 */4.06e-12 */5.35e-12 7943/210.25 7978/251.48

(582, 56,097, 10) 3.46∗104 rail582 1255/36.54 */4.23e-11 */2.60e-11 8036/195.24 8278/248.95

(2,586, 923,269, 1) 2.46∗105 rail2586 3254/343.08 */5.98e-11 */8.33e-11 24725/2631.23 25618/2729.25

(2,586, 923,269, 5) 2.46∗105 rail2586 2039/203.52 */2.21e-10 */2.42e-10 */6.14e-11 26307/2614.78

(2,586, 923,269, 10) 2.46∗105 rail2586 1843/163.57 */1.07e-09 */1.22e-09 26475/2630.74 31177/3194.57

(4,284, 1,096,894, 1) 1.60∗105 rail4284 4138/523.35 */1.61e-11 */1.62e-11 30633/3974.30 30391/3909.32

(4,284, 1,096,894, 5) 1.60∗105 rail4284 3852/454.55 */5.05e-11 */5.66e-11 */7.70e-08 */7.53e-08

(4,284, 1,096,894, 10) 1.60∗105 rail4284 2970/340.49 */1.06e-09 */1.15e-09 */6.86e-11 31325/3394.41

(73, 123,409, 1) 2.56∗105 nw14 793/28.11 4828/167.18 3416/114.27 4718/202.63 4527/178.69

(73, 123,409, 5) 2.56∗105 nw14 4753/186.80 96469/3317.70 80492/2513.14 10451/341.44 9860/310.00

(73, 123,409, 10) 2.56∗105 nw14 2460/92.08 120336/3364.65 86166/2366.60 18593/604.72 18294/593.66

(27,441, 30,733, 1) 3.6∗1011 baxter 2431/35.26 4671/70.73 4276/65.40 5098/67.13 4339/44.83

(27,441, 30,733, 5) 3.6∗1011 baxter 11805/140.86 12352/186.97 9150/134.82 11976/152.81 8329/82.57

(27,441, 30,733, 10) 3.6∗1011 baxter 20929/240.32 21569/322.11 19936/307.04 16833/210.20 12231/122.60

Table 6: Iteration counts and runtimes (in seconds) for the Lasso Problem in § 4.2. The tolerances are set to 10−13. Entries
marked with * did not converge in the time limit of 7200 seconds. The ATR metric is 6.32.

− r ≤ zi ≤ r, i ∈ {1, ..., n}.

For our experiments in § 4.4, we vary the dimensions (m,n) and generate the matrices B and
C to be fully dense. The entries of B, C, and d (resp. D) are generated by sampling from the
uniform distribution U [0, 1] (resp. U [1, 1000]). The vector a is varied to be either the vector that
takes value −1 in its last component and value 1 in all its other components or the vector that takes
value −1 in its last 10 components and value 1 in all its other components. The scalars b and r are
taken to be 0 and 5, respectively. The initial starting point x0 is generated as a random vector in
U [−r, r]n. Finally, we choose (τ1, τ2) ∈ ℜ2

++ so that L̄ = λmax(∇2f) and µ̄ = λmin(∇2f) are the
various values given in the tables of this subsection. Table 9 and Table 10 present the performance
of all five methods on the same exact 12 instances, but for target accuracies ϵ = 10−8 and ϵ = 10−13,
respectively.
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Dimensions Curvatures Iteration Count/Runtime (seconds)

(m,n) (µ̄,L̄) RPF-SFISTA FISTA-BT FISTA-R RA-FISTA GR-FISTA

(1000, 5000) (10−8, 102) 760/1261.82 */1.13e-07 */8.91e-08 2385/3050.66 1929/2460.67

(1000, 5000) (10−6, 102) 322/536.82 3201/4345.55 3201/4529.81 2291/2924.71 2163/2781.60

(1000, 5000) (10−4, 103) 140/224.95 619/886.74 619/886.54 2090/2685.77 1714/2206.25

(1000, 5000) (10−6, 103) 113/181.25 623/991.30 623/854.16 2569/3258.33 2593/3509.69

(1000, 5000) (10−7, 104) 88/141.95 357/585.77 357/534.64 2840/3649.55 2719/3512.51

(1000, 5000) (10−4, 106) 72/108.84 131/197.84 102/151.87 3231/4136.42 2735/3483.86

(2000, 10000) (10−4, 104) 120/1162.83 249/2413.96 249/2549.80 */7.41e-05 */2.67e-05

(2000, 10000) (10−4, 104) 69/694.64 128/1257.82 83/823.70 */7.91e-05 */2.77e-05

(2000, 10000) (10−4, 104) 75/735.75 131/1287.77 97/965.95 */3.20e-02 */2.76e-03

(2000, 10000) (10−4, 106) 57/540.71 89/820.29 74/716.82 */3.93e-03 */2.27e-03

(2000, 10000) (10−4, 103) 191/1937.20 685/6795.16 685/6895.35 */6.57e-05 */2.93e-05

(2000, 10000) (10−4, 104) 92/941.71 249/2406.88 156/1563.07 */3.51e-03 */1.14e-03

Table 7: Iteration counts and runtimes (in seconds) for the Vector QP with Simplex Constraints in § 4.3. The tolerances are
set to 10−8. Entries marked with * did not converge in the time limit of 7200 seconds. The ATR metric is 3.27.

Dimensions Curvatures Iteration Count/Runtime (seconds)

(m,n) (µ̄,L̄) RPF-SFISTA FISTA-BT FISTA-R RA-FISTA GR-FISTA

(1000, 5000) (10−8, 102) 1335/1900.39 */7.91e-08 */1.02e-07 4009/5030.54 3591/4570.78

(1000, 5000) (10−6, 102) 533/847.84 */6.08e-10 */1.10e-09 4037/5120.40 3627/4674.44

(1000, 5000) (10−4, 103) 221/368.37 1971/2643.61 1971/2807.98 3860/4904.65 3320/4256.82

(1000, 5000) (10−6, 103) 169/292.13 1702/2445.07 1702/2530.27 4606/5894.16 4000/5128.65

(1000, 5000) (10−7, 104) 130/226.82 902/1473.35 902/1431.87 4704/6004.52 4187/5341.55

(1000, 5000) (10−4, 106) 100/157.56 274/457.90 248/377.36 4798/6149.02 4193/5376.22

(2000, 10000) (10−4, 104) 178/1808.51 */8.52e-13 */9.83e-13 */7.79e-05 */2.53e-05

(2000, 10000) (10−4, 104) 133/1336.16 394/3951.58 335/3365.69 */2.34e-04 */2.96e-05

(2000, 10000) (10−4, 104) 99/995.16 310/3114.84 273/2759.90 */4.56e-03 */2.74e-03

(2000, 10000) (10−4, 106) 96/907.03 191/1849.46 178/1705.75 */4.13e-03 */2.25e-03

(2000, 10000) (10−4, 103) 301/2996.59 */8.09e-09 */6.79e-09 */8.50e-04 */2.78e-05

(2000, 10000) (10−4, 104) 142/1416.76 */3.29e-13 601/6022.82 */2.34e-04 */9.04e-05

Table 8: Iteration counts and runtimes (in seconds) for the Vector QP problem with Simplex Constraints in § 4.3. The tolerances
are set to 10−13. Entries marked with * did not converge in the time limit of 7200 seconds. The ATR metric is 4.59.

4.5 Comments about the numerical results

As seen from Tables 4, 5, 6, 7, 8, 9, and 10, RPF-SFISTA was the most efficient method and the
only method able to find a solution of the desired accuracy (either 10−8 or 10−13) within the time
limit of 2 hours on every problem instance considered. Out of the 12 sparse logistic regression
problems instances considered in § 4.1, both FISTA-BT and FISTA-R only finished within the time
limit on 5 and 7 instances, respectively. Meanwhile, RA-FISTA and GR-FISTA finished on 4 and 7
instances, respectively. It can be seen from Table 4 that GR-FISTA was the second-best performing
method while RPF-SFISTA was the best performing method for this problem class. As indicated
by the ATR metric, RPF-SFISTA was on average over 14 times faster than GR-FISTA across all
12 instances.

Out of the 60 Lasso problem instances considered in § 4.2, both FISTA-BT and FISTA-R
finished within the time limit on 52 and 51 instances, respectively. RA-FISTA and GR-FISTA
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Dimensions Curvatures Iteration Count/Runtime (seconds)

(m,n) (µ̄,L̄) RPF-SFISTA FISTA-BT FISTA-R RA-FISTA GR-FISTA

(500, 1000) (10−4, 102) 1035/62.34 32483/1624.71 32483/1634.26 10568/443.47 7860/317.06

(500, 1000) (10−4, 102) 2922/165.28 53356/2604.41 53356/2701.43 10619/441.68 7863/326.54

(500, 1000) (10−2, 104) 607/34.03 8643/420.96 8643/436.37 9698/416.20 6820/284.80

(500, 1000) (10−2, 104) 1886/106.38 48990/2392.33 48990/2475.34 12016/528.72 6847/285.02

(500, 1000) (10−3, 103) 900/51.24 10023/489.64 10023/507.00 10584/461.42 8747/363.64

(500, 1000) (10−3, 103) 2948/166.56 52019/2550.12 52019/1444.09 10640/450.38 7901/324.36

(1000, 2000) (10−2, 103) 577/113.21 7507/1395.54 7507/1444.09 14361/2453.04 9767/1640.84

(1000, 2000) (10−2, 103) 2030/382.98 */1.37e-08 */1.47e-08 14326/2452.20 9707/1633.46

(1000, 2000) (10−1, 104) 624/113.08 7121/1317.06 7121/1367.63 14363/2456.39 9768/1642.85

(1000, 2000) (10−1, 104) 2054/376.27 */1.91e-08 */2.10e-08 14327/2448.34 9708/1634.13

(1000, 2000) (10−1, 105) 586/105.60 6919/1280.26 6919/1327.11 13962/2380.55 9940/1674.29

(1000, 2000) (10−1, 105) 2009/366.87 */1.94e-08 */1.99e-08 13959/2385.47 9327/1572.13

Table 9: Iteration counts and runtimes (in seconds) for the Vector QP problem with Box Constraints in § 4.4. The tolerances
are set to 10−8. Entries marked with * did not converge in the time limit of 7200 seconds. The ATR metric is 7.08.

Dimensions Curvatures Iteration Count/Runtime (seconds)

(m,n) (µ̄,L̄) RPF-SFISTA FISTA-BT FISTA-R RA-FISTA GR-FISTA

(500, 1000) (10−4, 102) 1970/90.50 */1.81e-11 */3.56e-11 17702/741.39 16033/677.15

(500, 1000) (10−4, 102) 6028/279.06 */3.33e-10 */4.60e-10 18304/756.50 15284/632.51

(500, 1000) (10−2, 104) 1024/45.91 42950/2096.65 42950/2180.87 15453/644.29 12308/518.62

(500, 1000) (10−2, 104) 3074/140.47 */1.32e-10 */1.43e-10 17664/734.98 12472/525.10

(500, 1000) (10−3, 103) 1868/84.54 62858/3063.96 62858/3183.97 18291/768.65 16425/685.00

(500, 1000) (10−3, 103) 6038/276.19 */2.34e-10 */3.63e-10 18331/776.90 15297/641.28

(1000, 2000) (10−2, 103) 1132/210.81 */1.06e-12 */9.77e-13 23314/3974.38 19020/3237.59

(1000, 2000) (10−2, 103) 3848/722.90 */1.45e-08 */1.50e-08 24491/4187.51 18788/3199.92

(1000, 2000) (10−1, 104) 1200/222.01 */1.23e-12 */8.72e-13 23293/3969.59 19033/3239.94

(1000, 2000) (10−1, 104) 4181/786.05 */2.09e-08 */2.32e-08 24503/4173.13 18781/3196.47

(1000, 2000) (10−1, 105) 1104/201.44 35820/6646.22 35820/6875.80 22498/3832.11 18868/3207.92

(1000, 2000) (10−1, 105) 3987/739.08 */1.88e-08 */1.96e-08 22219/3782.47 19405/3300.10

Table 10: Iteration counts and runtimes (in seconds) for the Vector QP problem with Box Constraints in § 4.4. The tolerances
are set to 10−13. Entries marked with * did not converge in the time limit of 7200 seconds. The ATR metric is 7.84.

finished within the time limit of 2 hours on 57 and 59 instances, respectively. It can be seen from
Tables 5 and 6 that GR-FISTA was the second-best performing method while RPF-SFISTA was
the best performing method for this problem class. As indicated by the ATR metrics in both tables,
RPF-SFISTA was approximately 3.87 times faster than GR-FISTA on the first 30 Lasso instances
considered and 6.32 times faster on the last 30 instances considered. Hence, RPF-SFISTA was
roughly 5 times faster than GR-FISTA across all 60 instances considered.

For the simplex-constrained dense QP instances considered in § 4.3, both FISTA-BT and FISTA-
R finished with a solution of accuracy 10−8 within the time limit on 11 of the 12 instances while
both RA-FISTA and GR-FISTA finished within the time limit on 6 instances. For this accuracy,
FISTA-R was the second-best performing method on this problem class while RPF-SFISTA was
the best performing method. As indicated by the ATR metric, RPF-SFISTA was on average over
3.3 times faster than FISTA-R across the 12 instances considered. When the desired accuracy
was 10−13, both FISTA-BT and FISTA-R finished within the time limit on 7 of the 12 instances
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while both RA-FISTA and GR-FISTA finished on 6 instances. For this accuracy, FISTA-R was the
second-best performing method while RPF-SFISTA was the best performing method. As indicated
by the ATR metric, RPF-SFISTA was on average over 4.6 times faster than FISTA-R across the 12
instances, showing that the gap between RPF-SFISTA and the other codes increased when a higher
accuracy of 10−13 was required.

For the box-constrained dense QP instances considered in § 4.4, both FISTA-BT and FISTA-R
finished with a solution of accuracy 10−8 within the time limit of 2 hours on 9 of the 12 instances
while both RA-FISTA and GR-FISTA finished on all 12 instances. For this accuracy, GR-FISTA
was the second-best performing method on this problem class while RPF-SFISTA was the best
performing method. As indicated by the ATR metric, RPF-SFISTA was on average over 7.08 times
faster than GR-FISTA across the 12 instances considered. When the desired accuracy was 10−13,
both FISTA-BT and FISTA-R finished within the time limit on just 3 of the 12 instances while
both RA-FISTA and GR-FISTA again finished on all 12 instances. GR-FISTA was the second-best
performing method while RPF-SFISTA was the best performing method. As indicated by the ATR
metric, RPF-SFISTA was on average over 7.8 times faster than GR-FISTA across the 12 instances.

A Proof of Proposition 2.1

This section is dedicated to proving Proposition 2.1. It is broken up into two subsections. The
first subsection is dedicated to proving Proposition 2.1(a)-(b) while the second one is dedicated to
proving Proposition 2.1(c).

A.1 Proof of Proposition 2.1(a)-(b)

The following lemma establishes a key bound on the distance between the iterate ξj and the initial
point zl−1 of the l-th cycle.

Lemma A.1. For every iteration index j ≥ 1 generated during the l-th cycle of RPF-SFISTA, it
holds that

∥ξj − zl−1∥2 ≤ Cµ̄(zl−1) (47)

where Cµ̄(·) is as in (16) and zl−1 is the initial point of the l-th cycle.

Proof. Let j ≥ 1 be an iteration index generated during the l-th cycle of RPF-SFISTA. It follows
immediately from the fact that ϕ is µ̄-convex and relation (41) with Ψ = ϕ and ν = µ̄ that the
following relations hold

∥ξj − z∗∥2 ≤
2

µ̄
[ϕ(ξj)− ϕ(z∗)] , ∥zl−1 − z∗∥2 ≤

2

µ̄
[ϕ(zl−1)− ϕ(z∗)] . (48)

The above relations, triangle inequality, and relation (25) then imply that

∥ξj − zl−1∥2 ≤ 2∥ξj − z∗∥2 + 2∥z∗ − zl−1∥2

(48)
≤ 4

µ̄
[ϕ(ξj)− ϕ(z∗)] +

4

µ̄
[ϕ(zl−1)− ϕ(z∗)]

(25)
≤ 8

µ̄
[ϕ(zl−1)− ϕ(z∗)] .

The conclusion of the lemma then immediately follows from the above relation and the definition
of Cµ̄(·) in (16).

The proof of Proposition 2.1(a)-(b) is now presented. The proof of part (a) has a similar pattern
to the proof of Proposition A.5 in [38], but we include the proof here for the sake of completeness.
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Proof of Proposition 2.1(a)-(b). (a) Consider the l-th cycle of RPF-SFISTA and let m denote the
first quantity in (18). Using this definition and the inequality log(1+α) ≥ α/(1+α) for any α > −1,
it can easily be seen that (

1 +Q−1
l

)2(m−1) ≥
Cµ̄(zl−1)ζ

2
l

χϵ̂2
. (49)

We claim that the l-th cycle of RPF-SFISTA terminates in either step 4 or step 5 in at most m
iterations. It is thus sufficient to show that if the l-th cycle of RPF-SFISTA has not stopped in
step 4 up to and including the m-th iteration, then it must stop successfully in step 5 at the m-th
iteration. So, assume that the l-th cycle of RPF-SFISTA has not stopped in step 4 up to the m-th
iteration. It is easy to see then in view of step 4 of RPF-SFISTA that relation (14) holds with
j = m.

It then follows from this relation, inequality (23) with j = m, the fact that x0 is set as zl−1 at
the beginning of the l-th cycle, relations (47) and (49), and inequality (24) with j = m that

Cµ̄(zl−1)
(47)
≥ ∥ξm − zl−1∥2 = ∥ξm − x0∥2

(14)
≥ χAmLm∥ym − x̃m−1∥2

(23)
≥ χ

ζ2l
AmLm∥vm∥2 (50)

(24)
≥ χ

ζ2l

(
1 +Q−1

l

)2(m−1) ∥vm∥2
(49)
≥ Cµ̄(zl−1)

ϵ̂2
∥vm∥2 (51)

which implies that the termination criterion (15) in step 5 of RPF-SFISTA is satisfied. Hence, the
l-th cycle of RPF-SFISTA must successfully stop at the end of its m-th iteration and the claim thus
holds. Moreover, it is easy to see from relation (22) that the second quantity in (18) is a bound on
the total number of times that step 2 of RPF-SFISTA needs to be repeated. Since every time step
2 of RPF-SFISTA is performed only one resolvent evaluation is needed, the conclusion of part (a)
follows.

(b) To show part (b), assume that the l-th cycle of RPF-SFISTA terminates in its step 5 and
outputs a quadruple (y, v, ξ, L). It then follows that (y, v, ξ, L) = (yj , vj , ξj , Lj) where j is an
iteration index generated during the l-th cycle of RPF-SFISTA. The inclusion in (23) and the
termination criterion (15) in step 5 of RPF-SFISTA then immediately imply that pair (y, v) =
(yj , vj) satisfies (5) and hence is an ϵ̂-optimal solution of (1). Moreover, it follows from the fact
that L = Lj for an iteration index j generated during the l-th cycle, both inequalities in (22), the
fact that the way Ml is chosen in step 0 implies that Ml ≥ M̄0, and relation (26) that

M̄0 ≤ Ml ≤ L
(22)
≤ max{Ml, κL̄}

(26)
≤ max

{
M̄0, κL̄

}
which implies that L satisfies the second relation in (19). To see the first relation in (19), observe
that the first conclusion of Lemma 2.4 and the facts that ξ = ξj and y = yj imply that ϕ(ξ) ≤ ϕ(y).
It also follows from combining relations (25) and (28) that ϕ(ξ) ≤ ϕ(z0), which together with the
above relation implies that the first relation in (19) holds. Proposition 2.1(b) then immediately
follows from the above conclusions.

A.2 Proof of Proposition 2.1(c)

For the remainder of this subsection, consider the l-th cycle of RPF-SFISTA and assume that j ≥ 1
is an iteration index generated during the cycle and that µ = µl−1 is in the interval (0, µ̄].

The main novelty in the proof of Proposition 2.1(c) lies in our careful construction of a sequence
γj which lower bounds the entire composite function ϕ. This construction is thus essential to
establishing that RPF-SFISTA is µ̄-universal as opposed to just µ̄f -universal.
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The proofs of Lemmas A.2 and A.3 below follow closely to the proofs of Lemmas A.6 and A.7
in [38] except for minor modifications due to our novel construction of the sequence γj . We include
the proofs here for completeness. The first lemma establishes key properties of the iterates of
RPF-SFISTA.

Lemma A.2. For every j ≥ 1 and x ∈ E, define

γj(x) := ϕ(yj) + 2 [ℓf (yj , x̃j−1)− f(yj)] + ⟨sj , x− yj⟩+
µ

4
∥x− yj∥2, (52)

where ϕ := f + h and sj are as in (1) and (11), respectively. Then, for every j ≥ 1, we have:

yj = argmin
x

{
γj(x) +

Lj
2
∥x− x̃j−1∥2

}
; (53)

xj = argmin
x

{
aj−1γj(x) + τj−1 ∥x− xj−1∥2 /2

}
. (54)

Proof. It follows from the definition of sj in (11) and the fact that ∇γj(yj) = sj that yj satisfies
the optimality condition for (53). This observation implies that relation (53) must hold. Moreover,
it follows from relations (10) and (12) that

aj−1∇γj(xj) + τj−1(xj − xj−1) = aj−1sj +
aj−1µ

2
(xj − yj) + τj−1(xj − xj−1)

(10)
= aj−1sj −

µaj−1

2
yj − τj−1xj−1 + τjxj

(12)
= 0

which implies that relation (54) holds.

Lemma A.3. For every j ≥ 1 and x ∈ E, we have

Aj−1γj(yj−1) + aj−1γj(x) +
τj−1

2
∥xj−1 − x∥2 −

τj
2
∥xj − x∥2

≥ Ajϕ(yj) +
χAjLj

2
∥yj − x̃j−1∥2. (55)

Proof. Relation (54), the second relation in (10), the fact that Ψj := aj−1γj(·) + τj−1∥ · −xj−1∥2/2
is (τj−1 + µaj−1/2)-convex, and relation (41) with Ψ = Ψj and ν = τj imply that

aj−1γj(x) +
τj−1

2
∥x− xj−1∥2 −

τj
2
∥x− xj∥2 ≥ aj−1γj(xj) +

τj−1

2
∥xj − xj−1∥2 ∀x ∈ E. (56)

It then follows from the convexity of γj , the definitions of x̃j−1 and Aj in (6) and (10), respectively,
and the second equality in (21), that

Aj−1γj(yj−1) + aj−1γj(xj) +
τj−1

2
∥xj − xj−1∥2

≥ Ajγj
(
Aj−1yj−1 + aj−1xj

Aj

)
+
τj−1A

2
j

2a2j−1

∥∥∥∥Aj−1yj−1 + aj−1xj
Aj

− Aj−1yj−1 + aj−1xj−1

Aj

∥∥∥∥2
(6)
≥ Aj min

x

[
γj (x) +

τj−1Aj
2a2j−1

∥x− x̃j−1∥2
]

(21)
= Aj min

x

{
γj(x) +

Lj
2
∥x− x̃j−1∥2

}
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(53)
= Aj

[
γj(yj) +

Lj
2
∥yj − x̃j−1∥2

]
(52)
= Aj

[
ϕ(yj) + 2[ℓf (yj , x̃j−1)− f(yj)] +

Lj
2
∥yj − x̃j−1∥2

]
(8)
≥ Aj

[
ϕ(yj) +

χLj
2
∥yj − x̃j−1∥2

]
. (57)

Combining relations (56) and (57) then immediately implies the conclusion of the lemma.

We now present a technical lemma that is important for proving the lemma that directly follows
it. The proof can be found in [20].

Lemma A.4. Assume that φ is a ξ-strongly convex function and let (y, η) ∈ E × ℜ be such that
0 ∈ ∂ηφ(y). Then,

0 ∈ ∂2η
(
φ(·)− ξ

4
∥ · −y∥2

)
(y).

The following lemma establishes that the estimate sequence γj constructed in (A.2) lower bounds
ϕ.

Lemma A.5. For every j ≥ 1, we have that γj ≤ ϕ.

Proof. For every j ≥ 1, define
γ̃j(x) := ℓf (x; x̃j−1) + h(x). (58)

The fact that f is convex implies that γ̃j ≤ ϕ. It follows from the definition of yj in (7) that

yj = argmin
x

{
γ̃j(x) +

Lj
2
∥x− x̃j−1∥2

}
. (59)

Now, it is easy to see from definition of sj in (11) and relation (59) that sj ∈ ∂γ̃j(yj). Thus, by the
subgradient inequality and the fact that γ̃j(x) ≤ ϕ(x), we have that for all x ∈ E:

ϕ(x) ≥ γ̃j(x) ≥ γ̃j(yj) + ⟨sj , x− yj⟩ = ϕ(yj) + ⟨sj , x− yj⟩ − ηj ,

where ηj := ϕ(yj)−γ̃(yj). Hence, by the definition of ηj-subdifferential, it follows that sj ∈ ∂ηjϕ(yj).
Now, note that ϕ is a µ-strongly convex function since µ = µl−1 is assumed to be in the interval
(0, µ̄]. Thus, by Lemma A.4 with ξ = µ and φ(·) = ϕ(·)− ⟨sj , · − yj⟩, we have

sj ∈ ∂2ηj
(
ϕ(·)− µ

4
∥ · −yj∥2

)
(yj). (60)

Hence, it follows from the definition of ηj above, relation (60), the fact that h = ϕ − f , and the
definitions of γ̃j(·) and γj(·) in (58) and (52), respectively that

ϕ(x)
(60)
≥ ϕ(yj) + ⟨sj , x− yj⟩+

µ

4
∥x− yj∥2 − 2ηj

= 2γ̃j(yj)− ϕ(yj) + ⟨sj , x− yj⟩+
µ

4
∥x− yj∥2

(58)
= 2ℓf (yj ; x̃j−1) + 2h(yj)− ϕ(yj) + ⟨sj , x− yj⟩+

µ

4
∥x− yj∥2

= 2ℓf (yj ; x̃j−1) + 2[ϕ(yj)− f(yj)]− ϕ(yj) + ⟨sj , x− yj⟩+
µ

4
∥x− yj∥2

(52)
= γj(x),

from which statement of the lemma immediately follows.
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Lemma A.6. For every j ≥ 1 and x ∈ H, we have

σj−1(x)− σj(x) ≥
χAjLj

2
∥yj − x̃j−1∥2

where
σj(x) := Aj [ϕ(yj)− ϕ(x)] +

τj
2
∥x− xj∥2.

Proof. Using Lemma A.3 and Lemma A.5 we have

Aj−1ϕ(yj−1)+aj−1ϕ(x) +
τj−1

2
∥xj−1 − x∥2 −

τj
2
∥xj − x∥2

≥ Ajϕ(yj) +
χAjLj

2
∥yj − x̃j−1∥2.

The conclusion of the lemma now follows by subtracting Ajϕ(x) from both sides of the above
inequality, and using the first equality in (10) and the definition of σj(x).

The following result is important for proving Proposition 2.1(c)

Lemma A.7. For every j ≥ 2 and x ∈ H, it holds that

Aj−1[ϕ(ξj−1)− ϕ(x)] +
τj−1

2
∥x− xj−1∥2 ≤

1

2
∥x− x0∥2 −

χ

2

j−1∑
i=1

AiLi∥yi − x̃i−1∥2. (61)

Proof. It follows from summing the inequality of Lemma A.6 from j = 1 to j = j − 1, using the
facts that A0 = 0 and τ0 = 1, and using the definition of σj(·) in Lemma A.6 that

Aj−1[ϕ(yj−1)− ϕ(x)] +
τj−1

2
∥x− xj−1∥2 ≤

1

2
∥x− x0∥2 −

χ

2

j−1∑
i=1

AiLi∥yi − x̃i−1∥2.

Relation (61) then immediately follows from the above relation and the fact that the first conclusion
of Lemma 2.4 implies that ϕ(ξj−1) ≤ ϕ(yj−1).

We are now ready to prove Proposition 2.1(c).

Proof of Proposition 2.1(c). Consider the l-th cycle of RPF-SFISTA and assume that it is performed
with µl−1 ∈ (0, µ̄]. Using relation (61) with x = ξj−1, it follows that

∥ξj−1 − x0∥2
(61)
≥ χ

j−1∑
i=1

AiLi∥yi − x̃i−1∥2 ≥ χAj−1Lj−1∥yj−1 − x̃j−2∥2.

It then follows from the above relation that for any iteration index j ≥ 1 generated during the l-th
cycle, it holds that

∥ξj − x0∥2 ≥ χAjLj∥yj − x̃j−1∥2. (62)

Hence, relation (62) implies that the inequality (14) checked in step 4 of RPF-SFISTA always holds
for every iteration index j ≥ 1 generated during the l-th cycle and hence the l-th cycle of RPF-
SFISTA never terminates in step 4. This observation together with Proposition 2.1(a)-(b) then
immediately imply that the l-th cycle must terminate successfully in its step 5 with a quadruple
(y, v, ξ, L) that satisfies (19) and such that (y, v) is an ϵ̂-optimal solution of (1) in at most (18)
ACG iterations/resolvent evaluations.
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